Deep embeddings with Essentia models

التفاصيل البيبلوغرافية
العنوان: Deep embeddings with Essentia models
المؤلفون: Alonso-Jiménez, Pablo, Bogdanov, Dmitry, Serra, Xavier
بيانات النشر: ISMIR
سنة النشر: 2020
المجموعة: UPF Digital Repository (Universitat Pompeu Fabra, Barcelona)
الوصف: Comunicació presentada a: International Society for Music Information Retrieval Conference celebrat de l'11 al 16 d'octubre de 2020 de manera virtual. ; We present the integration of various CNN TensorFlow models developed for different MIR tasks into Essentia. This is a continuation of our previous work [1], extending the list of supported models and adding new algorithms to facilitate usability. Essentia provides input feature extraction and inference with TensorFlow models in a single C++ pipeline with Python bindings, facilitating the deployment of C++ and Python MIR applications. We assess the new models’ capabilities to serve as embedding extractors in many downstream classification tasks. All presented models are publicly available on the Essentia website.
نوع الوثيقة: conference object
وصف الملف: application/pdf
اللغة: English
Relation: http://hdl.handle.net/10230/45452
الاتاحة: http://hdl.handle.net/10230/45452
Rights: Licensed under a Creative Commons Attribution 4.0 In- ternational License (CC BY 4.0). 21st International Society for Music Information Retrieval Conference, Montréal, Canada, 2020. ; https://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.E71174EE
قاعدة البيانات: BASE