Academic Journal

The Apollonian structure of integer superharmonic matrices

التفاصيل البيبلوغرافية
العنوان: The Apollonian structure of integer superharmonic matrices
المؤلفون: Lionel Levine, Wesley Pegden, Charles K. Smart
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://www.math.cornell.edu/~levine//apollonian-superharmonic.pdf.
سنة النشر: 2013
المجموعة: CiteSeerX
الوصف: We prove that the set of quadratic growths attainable by integervalued superharmonic functions on the lattice Z² has the structure of an Apollonian circle packing, affirming a conjecture posed by the authors in [7], and completely characterizing the PDE which determines the continuum scaling limit of the Abelian sandpile on the lattice Z².
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.380.2768; http://www.math.cornell.edu/~levine//apollonian-superharmonic.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.380.2768
http://www.math.cornell.edu/~levine//apollonian-superharmonic.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.E5E350D8
قاعدة البيانات: BASE