Academic Journal

Supervised machine learning for multi-principal element alloy structural design

التفاصيل البيبلوغرافية
العنوان: Supervised machine learning for multi-principal element alloy structural design
المؤلفون: Berry, J., Christofidou, K.A.
بيانات النشر: SAGE Publications
سنة النشر: 2024
المجموعة: White Rose Research Online (Universities of Leeds, Sheffield & York)
الوصف: The application of supervised Machine Learning (ML) in material science, especially towards the design of structural Multi-Principal Element Alloys (MPEAs) has rapidly accelerated over the past five years. However, several factors are limiting the impact that these ML methodologies can have, chief amongst them being the availability and fidelity of data. This review analyses how ML has been utilised to accelerate the design of novel structural MPEAs, outlining the standard procedures followed, and highlighting the successes and common pitfalls identified in current studies. The need for experimental validation and incorporation into closed loop ML pipelines is also discussed, including the influence and integration of manufacturing methodologies into the ML decision making process.
نوع الوثيقة: article in journal/newspaper
وصف الملف: text
اللغة: English
Relation: https://eprints.whiterose.ac.uk/218181/1/berry-christofidou-2024-supervised-machine-learning-for-multi-principal-element-alloy-structural-design.pdf; Berry, J. orcid.org/0000-0001-7291-2306 and Christofidou, K.A. orcid.org/0000-0002-8064-5874 (2024) Supervised machine learning for multi-principal element alloy structural design. Materials Science and Technology. ISSN 0267-0836
DOI: 10.1177/02670836241272086
الاتاحة: https://eprints.whiterose.ac.uk/218181/
https://doi.org/10.1177/02670836241272086
Rights: cc_by_4
رقم الانضمام: edsbas.E43E31B4
قاعدة البيانات: BASE
الوصف
DOI:10.1177/02670836241272086