Academic Journal

Text Algorithms in Economics

التفاصيل البيبلوغرافية
العنوان: Text Algorithms in Economics
المؤلفون: Ash, Elliott, Hansen, Stephen
المصدر: Annual Review of Economics, 15 (1)
بيانات النشر: Annual Reviews
سنة النشر: 2023
المجموعة: ETH Zürich Research Collection
مصطلحات موضوعية: text as data, topic model, word embeddings, large language models, transformer models
الوصف: This article provides an overview of the methods used for algorithmic text analysis in economics, with a focus on three key contributions. First, we introduce methods for representing documents as high-dimensional count vectors over vocabulary terms, for representing words as vectors, and for representing word sequences as embedding vectors. Second, we define four core empirical tasks that encompass most text-as-data research in economics and enumerate the various approaches that have been taken so far to accomplish these tasks. Finally, we flag limitations in the current literature, with a focus on the challenge of validating algorithmic output. ; ISSN:1941-1383 ; ISSN:1941-1391
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/application/pdf
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/001066019400025; http://hdl.handle.net/20.500.11850/593179
DOI: 10.3929/ethz-b-000593179
الاتاحة: https://hdl.handle.net/20.500.11850/593179
https://doi.org/10.3929/ethz-b-000593179
Rights: info:eu-repo/semantics/openAccess ; http://creativecommons.org/licenses/by/4.0/ ; Creative Commons Attribution 4.0 International
رقم الانضمام: edsbas.E31CCF08
قاعدة البيانات: BASE
الوصف
DOI:10.3929/ethz-b-000593179