Academic Journal

Maximum Geometric Quantum Entropy

التفاصيل البيبلوغرافية
العنوان: Maximum Geometric Quantum Entropy
المؤلفون: Fabio Anza, James P. Crutchfield
المصدر: Entropy, Vol 26, Iss 3, p 225 (2024)
بيانات النشر: MDPI AG
سنة النشر: 2024
المجموعة: Directory of Open Access Journals: DOAJ Articles
مصطلحات موضوعية: quantum mechanics, geometric quantum mechanics, maximum entropy estimation, density matrix, Science, Astrophysics, QB460-466, Physics, QC1-999
الوصف: Any given density matrix can be represented as an infinite number of ensembles of pure states. This leads to the natural question of how to uniquely select one out of the many, apparently equally-suitable, possibilities. Following Jaynes’ information-theoretic perspective, this can be framed as an inference problem. We propose the Maximum Geometric Quantum Entropy Principle to exploit the notions of Quantum Information Dimension and Geometric Quantum Entropy. These allow us to quantify the entropy of fully arbitrary ensembles and select the one that maximizes it. After formulating the principle mathematically, we give the analytical solution to the maximization problem in a number of cases and discuss the physical mechanism behind the emergence of such maximum entropy ensembles.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 1099-4300
Relation: https://www.mdpi.com/1099-4300/26/3/225; https://doaj.org/toc/1099-4300; https://doaj.org/article/183747a4e4ea4af2acb7b886603427d2
DOI: 10.3390/e26030225
الاتاحة: https://doi.org/10.3390/e26030225
https://doaj.org/article/183747a4e4ea4af2acb7b886603427d2
رقم الانضمام: edsbas.E25CA666
قاعدة البيانات: BASE
الوصف
تدمد:10994300
DOI:10.3390/e26030225