Academic Journal
Maximum Geometric Quantum Entropy
العنوان: | Maximum Geometric Quantum Entropy |
---|---|
المؤلفون: | Fabio Anza, James P. Crutchfield |
المصدر: | Entropy, Vol 26, Iss 3, p 225 (2024) |
بيانات النشر: | MDPI AG |
سنة النشر: | 2024 |
المجموعة: | Directory of Open Access Journals: DOAJ Articles |
مصطلحات موضوعية: | quantum mechanics, geometric quantum mechanics, maximum entropy estimation, density matrix, Science, Astrophysics, QB460-466, Physics, QC1-999 |
الوصف: | Any given density matrix can be represented as an infinite number of ensembles of pure states. This leads to the natural question of how to uniquely select one out of the many, apparently equally-suitable, possibilities. Following Jaynes’ information-theoretic perspective, this can be framed as an inference problem. We propose the Maximum Geometric Quantum Entropy Principle to exploit the notions of Quantum Information Dimension and Geometric Quantum Entropy. These allow us to quantify the entropy of fully arbitrary ensembles and select the one that maximizes it. After formulating the principle mathematically, we give the analytical solution to the maximization problem in a number of cases and discuss the physical mechanism behind the emergence of such maximum entropy ensembles. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
تدمد: | 1099-4300 |
Relation: | https://www.mdpi.com/1099-4300/26/3/225; https://doaj.org/toc/1099-4300; https://doaj.org/article/183747a4e4ea4af2acb7b886603427d2 |
DOI: | 10.3390/e26030225 |
الاتاحة: | https://doi.org/10.3390/e26030225 https://doaj.org/article/183747a4e4ea4af2acb7b886603427d2 |
رقم الانضمام: | edsbas.E25CA666 |
قاعدة البيانات: | BASE |
تدمد: | 10994300 |
---|---|
DOI: | 10.3390/e26030225 |