Academic Journal

Using spatiotemporal prediction models to quantify PM 2.5 exposure due to daily movement

التفاصيل البيبلوغرافية
العنوان: Using spatiotemporal prediction models to quantify PM 2.5 exposure due to daily movement
المؤلفون: Jain, Sakshi, Presto, Albert A., Zimmerman, Naomi
المساهمون: Heinz Endowments, U.S. Environmental Protection Agency, Canada Research Chairs, Natural Sciences and Engineering Research Council of Canada
المصدر: Environmental Science: Atmospheres ; volume 3, issue 11, page 1665-1677 ; ISSN 2634-3606
بيانات النشر: Royal Society of Chemistry (RSC)
سنة النشر: 2023
الوصف: This study estimates exposure differences when considering spatiotemporal variations in PM 2.5 concentration that a population may experience, using daily average land use regression estimates for 2017 in Pittsburgh, PA.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1039/d3ea00051f
الاتاحة: http://dx.doi.org/10.1039/d3ea00051f
http://pubs.rsc.org/en/content/articlepdf/2023/EA/D3EA00051F
Rights: http://creativecommons.org/licenses/by-nc/3.0/
رقم الانضمام: edsbas.E24E49A8
قاعدة البيانات: BASE