Academic Journal
Using spatiotemporal prediction models to quantify PM 2.5 exposure due to daily movement
العنوان: | Using spatiotemporal prediction models to quantify PM 2.5 exposure due to daily movement |
---|---|
المؤلفون: | Jain, Sakshi, Presto, Albert A., Zimmerman, Naomi |
المساهمون: | Heinz Endowments, U.S. Environmental Protection Agency, Canada Research Chairs, Natural Sciences and Engineering Research Council of Canada |
المصدر: | Environmental Science: Atmospheres ; volume 3, issue 11, page 1665-1677 ; ISSN 2634-3606 |
بيانات النشر: | Royal Society of Chemistry (RSC) |
سنة النشر: | 2023 |
الوصف: | This study estimates exposure differences when considering spatiotemporal variations in PM 2.5 concentration that a population may experience, using daily average land use regression estimates for 2017 in Pittsburgh, PA. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
DOI: | 10.1039/d3ea00051f |
الاتاحة: | http://dx.doi.org/10.1039/d3ea00051f http://pubs.rsc.org/en/content/articlepdf/2023/EA/D3EA00051F |
Rights: | http://creativecommons.org/licenses/by-nc/3.0/ |
رقم الانضمام: | edsbas.E24E49A8 |
قاعدة البيانات: | BASE |
DOI: | 10.1039/d3ea00051f |
---|