Academic Journal

Automated cell type annotation and exploration of single-cell signaling dynamics using mass cytometry

التفاصيل البيبلوغرافية
العنوان: Automated cell type annotation and exploration of single-cell signaling dynamics using mass cytometry
المؤلفون: Dimitrios Kleftogiannnis, Sonia Gavasso, Benedicte Sjo Tislevoll, Nisha van der Meer, Inga K.F. Motzfeldt, Monica Hellesøy, Stein-Erik Gullaksen, Emmanuel Griessinger, Oda Fagerholt, Andrea Lenartova, Yngvar Fløisand, Jan Jacob Schuringa, Bjørn Tore Gjertsen, Inge Jonassen
المصدر: iScience, Vol 27, Iss 7, Pp 110261- (2024)
بيانات النشر: Elsevier
سنة النشر: 2024
المجموعة: Directory of Open Access Journals: DOAJ Articles
مصطلحات موضوعية: Bioinformatics, Cancer, Machine learning, Science
الوصف: Summary: Mass cytometry by time-of-flight (CyTOF) is an emerging technology allowing for in-depth characterization of cellular heterogeneity in cancer and other diseases. Unfortunately, high-dimensional analyses of CyTOF data remain quite demanding. Here, we deploy a bioinformatics framework that tackles two fundamental problems in CyTOF analyses namely (1) automated annotation of cell populations guided by a reference dataset and (2) systematic utilization of single-cell data for effective patient stratification. By applying this framework on several publicly available datasets, we demonstrate that the Scaffold approach achieves good trade-off between sensitivity and specificity for automated cell type annotation. Additionally, a case study focusing on a cohort of 43 leukemia patients reported salient interactions between signaling proteins that are sufficient to predict short-term survival at time of diagnosis using the XGBoost algorithm. Our work introduces an automated and versatile analysis framework for CyTOF data with many applications in future precision medicine projects.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 2589-0042
Relation: http://www.sciencedirect.com/science/article/pii/S258900422401486X; https://doaj.org/toc/2589-0042; https://doaj.org/article/003d137f2d7f4c8881fa8678f31e47b1
DOI: 10.1016/j.isci.2024.110261
الاتاحة: https://doi.org/10.1016/j.isci.2024.110261
https://doaj.org/article/003d137f2d7f4c8881fa8678f31e47b1
رقم الانضمام: edsbas.E232263
قاعدة البيانات: BASE
الوصف
تدمد:25890042
DOI:10.1016/j.isci.2024.110261