Academic Journal

Digital Twin for Experimental Data Fusion Applied to a Semi-Industrial Furnace Fed with H2-Rich Fuel Mixtures

التفاصيل البيبلوغرافية
العنوان: Digital Twin for Experimental Data Fusion Applied to a Semi-Industrial Furnace Fed with H2-Rich Fuel Mixtures
المؤلفون: Procacci, Alberto, Cafiero, Marianna, Sharma, Saurabh, Kamal, Muhammad Mustafa, Coussement, Axel, Parente, Alessandro
المصدر: Energies
سنة النشر: 2023
المجموعة: DI-fusion : dépôt institutionnel de l'Université libre de Bruxelles (ULB)
مصطلحات موضوعية: Combustion, data fusion, digital twin, dimensionality reduction
الوصف: The objective of this work is to build a Digital Twin of a semi-industrial furnace using Gaussian Process Regression coupled with dimensionality reduction via Proper Orthogonal Decomposition. The Digital Twin is capable of integrating different sources of information, such as temperature, chemiluminescence intensity and species concentration at the outlet. The parameters selected to build the design space are the equivalence ratio and the benzene concentration in the fuel stream. The fuel consists of a H2/CH4/CO blend, doped with a progressive addition of C6H6. It is an H2-rich fuel mixture, representing a surrogate of a more complex Coke Oven Gas industrial mixture. The experimental measurements include the flame temperature distribution, measured on a 6×8 grid using an air-cooled suction pyrometer, spatially resolved chemiluminescence measurements of OH∗ and CH∗, and the species concentration (i.e. NO, NO2, CO, H2O, CO2, O2) measured in the exhaust gases. The GPR-based Digital Twin approach has already been successfully applied on numerical datasets coming from CFD simulations. In this work, we demonstrate that the same approach can be applied on heterogeneous datasets, obtained from experimental measurements. ; SCOPUS: ar.j ; info:eu-repo/semantics/published
نوع الوثيقة: article in journal/newspaper
وصف الملف: 1 full-text file(s): application/pdf
اللغة: English
Relation: uri/info:doi/10.3390/en16020662; uri/info:scp/85146727353; https://dipot.ulb.ac.be/dspace/bitstream/2013/354681/1/doi_338325.pdf; http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/354681
الاتاحة: http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/354681
https://dipot.ulb.ac.be/dspace/bitstream/2013/354681/1/doi_338325.pdf
رقم الانضمام: edsbas.E1ECA69F
قاعدة البيانات: BASE