Dissertation/ Thesis

Metabolic interactions' decoding in milk during the experimental evolution of a lactococcal consortium and an undefined community from raw milk alone or in association. ; Décryptage des interactions métaboliques en lait lors de l'évolution expérimentale d'un consortium de lactocoques et d'une communauté issue de lait cru seuls ou en association.

التفاصيل البيبلوغرافية
العنوان: Metabolic interactions' decoding in milk during the experimental evolution of a lactococcal consortium and an undefined community from raw milk alone or in association. ; Décryptage des interactions métaboliques en lait lors de l'évolution expérimentale d'un consortium de lactocoques et d'une communauté issue de lait cru seuls ou en association.
المؤلفون: Caillaud, Marie-Aurore
المساهمون: Toulouse Biotechnology Institute (TBI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), INSA de Toulouse, Marie-Line Daveran, Hélène Tormo
المصدر: https://theses.hal.science/tel-03715733 ; Microbiologie et Parasitologie. INSA de Toulouse, 2021. Français. ⟨NNT : 2021ISAT0035⟩.
بيانات النشر: CCSD
سنة النشر: 2021
المجموعة: Institut National de la Recherche Agronomique: ProdINRA
مصطلحات موضوعية: Experimental evolution, Interactions, Modelling, Lactococcus lactis, Metabolism, Raw milk, Evolution expérimentale, Modélisation, Lactoccus lactis, Métabolisme, Lait cru, [SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology
الوصف: Different types of interactions govern populations’ dynamics within microbial ecosystems, allowing microorganisms’ cohabitation and coevolution over time and space. Studying simplified synthetic consortia constitutes an approach more and more used to decipher the interactive networks within natural communities. Among existing interactions, metabolic interactions, usually encountered in dairy food ecosystems, can be studied under monitored conditions, thanks to easily measurable descriptors linked to the technological functionalities of the ecosystem. The Lactococcus lactis mesophilic species, implicated in dairy fermentations due to its acidifying and aroma compounds’ production capacities, is characterized by a large genetic and phenotypic diversity. This species may be found in various habitats, like plants or animals, these including “environmental” strains with multifarious metabolic capacities, being able to colonize raw milk environment. If several works studied the L. lactis strains’ adaptation in pure cultures, few have considered their adaptation when interacting together within the same ecosystem, thus reflecting natural conditions. These works aimed to decrypt metabolic interactions within a consortium of three L. lactis strains during their adaptive evolution in milk over more than 800 generations. Strains’ dynamics in the consortium was carried out with digital droplet PCR (ddPCR), a strain-specific tracking tool targeting polymorphisms within the recN housekeeping gene. This tool was expanded to the detection of the species L. lactis and L. cremoris and the biovar diacetylactis found in dairy starters. A mathematical model based on descriptors linked to the microbial growth and the carbon and nitrogen metabolisms was proposed in the aim to explain the strains’ dynamics within the consortium. The rapid loss of one strain raised the hypothesis of the absence of positive interaction with this strain. For the two other strains, their dynamics in the consortium over the 800 generations reports on i) an ...
نوع الوثيقة: doctoral or postdoctoral thesis
اللغة: French
Relation: NNT: 2021ISAT0035
الاتاحة: https://theses.hal.science/tel-03715733
https://theses.hal.science/tel-03715733v1/document
https://theses.hal.science/tel-03715733v1/file/2021MarieAuroreCAILLAUD.pdf
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.E0D3C20C
قاعدة البيانات: BASE