Academic Journal

A Smoothed Particle Hydrodynamics approach for thermo-capillary flows

التفاصيل البيبلوغرافية
العنوان: A Smoothed Particle Hydrodynamics approach for thermo-capillary flows
المؤلفون: Hopp-Hirschler, M., Shadloo, M.S., Nieken, U.
المساهمون: Universität Stuttgart Stuttgart, Complexe de recherche interprofessionnel en aérothermochimie (CORIA), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut für Chemische Verfahrenstechnik, University of Stuttgart
المصدر: ISSN: 0045-7930 ; Computers and Fluids ; https://hal.science/hal-02127856 ; Computers and Fluids, 2018, 176, pp.1-19. ⟨10.1016/j.compfluid.2018.09.010⟩.
بيانات النشر: HAL CCSD
Elsevier
سنة النشر: 2018
المجموعة: Normandie Université: HAL
مصطلحات موضوعية: Capillarity, Capillary flow, Finite volume method, Heat convection, Multiphase flow, Surface tension, Tantalum compounds, Continuum surface forces, Diffusive transport, Lid-driven cavities, Marangoni effects, Mesh-less methods, Smoothed particle hydrodynamics, Tangential components, Thermal convections, Hydrodynamics, [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
الوصف: cited By 1 ; Interfacial-driven flows are important phenomena in many processes. In this article, we present a Smoothed Particle Hydrodynamics (SPH) model for thermo-capillary flow driven by gradients of the surface tension. The model is based on the continuum surface force (CSF) approach including Marangoni forces. An incompressible SPH approach using (i) density-invariant divergence-free (DIDF), (ii) corrected SPH and (iii) particle shifting approaches for multi-phase systems is used for accurate results. We carefully validate the proposed model using several test cases. First, we demonstrate the effects of corrected SPH and particle shifting approaches using Taylor-Green vortex. Then, we study single-phase flow problems to validate correct implementation of boundary conditions, momentum and energy balance using lid-driven cavity, diffusive transport problem, and buoyancy-driven cavity test cases. Afterward, we investigate different multi-phase flow problems to validate normal and tangential component of the surface tension. Finally, we apply the model to thermo-capillary rise of a droplet due to a temperature gradient. We present a convergence study and compare the results with their counterparts obtained from OpenFoam software as well as Finite Volume method (FVM) reference from literature. We demonstrate that the proposed model is very accurate for thermo-capillary flow. The simulation results of the current SPH approach will be available online for the community. © 2018 Elsevier Ltd
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: hal-02127856; https://hal.science/hal-02127856
DOI: 10.1016/j.compfluid.2018.09.010
الاتاحة: https://hal.science/hal-02127856
https://doi.org/10.1016/j.compfluid.2018.09.010
رقم الانضمام: edsbas.DBF2769
قاعدة البيانات: BASE
الوصف
DOI:10.1016/j.compfluid.2018.09.010