Academic Journal

Evaluation of cell-free DNA approaches for multi-cancer early detection

التفاصيل البيبلوغرافية
العنوان: Evaluation of cell-free DNA approaches for multi-cancer early detection
المؤلفون: Jamshidi, A, Liu, MC, Klein, EA, Venn, O, Hubbell, E, Beausang, JF, Gross, S, Melton, C, Fields, AP, Liu, Q, Zhang, N, Fung, ET, Kurtzman, KN, Amini, H, Betts, C, Civello, D, Freese, P, Calef, R, Davydov, K, Fayzullina, S, Hou, C, Jiang, R, Jung, B, Tang, S, Demas, V, Newman, J, Sakarya, O, Scott, E, Shenoy, A, Shojaee, S, Steffen, KK, Nicula, V, Chien, TC, Bagaria, S, Hunkapiller, N, Desai, M, Dong, Z, Richards, DA, Yeatman, TJ, Cohn, AL, Thiel, DD, Berry, DA, Tummala, MK, McIntyre, K, Sekeres, MA, Bryce, A, Aravanis, AM, Seiden, MV, Swanton, C
المصدر: Cancer Cell , 40 (12) pp. 1537-1549. (2022)
بيانات النشر: Elsevier BV
سنة النشر: 2022
المجموعة: University College London: UCL Discovery
مصطلحات موضوعية: CCGA, MCED, cancer screening, cfDNA, multi-cancer early detection, single nucleotide variants, somatic copy number alterations, whole-genome bisulfite sequencing, whole-genome methylation, Humans, Cell-Free Nucleic Acids, Early Detection of Cancer, Neoplasms, Biomarkers, Tumor, DNA Methylation
الوصف: In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance comparisons. Among 10 machine-learning classifiers trained on the same samples and independently validated, when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide variants with paired white blood cell background removal, and combined scores from classifiers evaluated in this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor biology. Clinical LODs mirror relative sensitivities for all approaches. The WG methylation feature best predicts cancer signal origin. WG methylation is the most promising technology for MCED and informs development of a targeted methylation MCED test.
نوع الوثيقة: article in journal/newspaper
وصف الملف: text
اللغة: English
Relation: https://discovery.ucl.ac.uk/id/eprint/10162940/1/PIIS153561082200513X-2.pdf; https://discovery.ucl.ac.uk/id/eprint/10162940/
الاتاحة: https://discovery.ucl.ac.uk/id/eprint/10162940/1/PIIS153561082200513X-2.pdf
https://discovery.ucl.ac.uk/id/eprint/10162940/
Rights: open
رقم الانضمام: edsbas.DB75A7AE
قاعدة البيانات: BASE