Dissertation/ Thesis

On the Nilpotent Representation Theory of Groups

التفاصيل البيبلوغرافية
العنوان: On the Nilpotent Representation Theory of Groups
المؤلفون: Milana D Golich
سنة النشر: 2024
المجموعة: Purdue University Graduate School: Figshare
مصطلحات موضوعية: Algebra and number theory, Group theory and generalisations, Topology, Nilpotent groups, Hyperbolic manifolds, Galois groups, Algebraic Curves, Isospectrality, Lattices, Representation Theory
الوصف: In this article, we establish results concerning the nilpotent representation theory of groups. In particular, we utilize a theorem of Stallings to provide a general method that constructs pairs of groups that have isomorphic universal nilpotent quotients. We then prove by counterexample that absolute Galois groups of number fields are not determined by their universal nilpotent quotients. We also show that this is the case for residually nilpotent Kleinian groups and in fact, there exist non-isomorphic pairs that have arbitrarily large nilpotent genus. We additionally provide examples of non-isomorphic curves whose geometric fundamental groups have isomorphic universal nilpotent quotients and the isomorphisms are compatible with the outer Galois actions.
نوع الوثيقة: thesis
اللغة: unknown
Relation: https://figshare.com/articles/thesis/On_the_Nilpotent_Representation_Theory_of_Groups/25668819
DOI: 10.25394/pgs.25668819.v1
الاتاحة: https://doi.org/10.25394/pgs.25668819.v1
Rights: CC BY 4.0
رقم الانضمام: edsbas.DB331E96
قاعدة البيانات: BASE
الوصف
DOI:10.25394/pgs.25668819.v1