Conference
NPCS: Native Provenance Computation for SPARQL
العنوان: | NPCS: Native Provenance Computation for SPARQL |
---|---|
المؤلفون: | Asma, Zubaria, Hernández, Daniel, Galárraga, Luis, Flouris, Giorgos, Fundulaki, Irini, Hose, Katja |
المساهمون: | Institute of Computer Science FORTH, Heraklion (ICS-FORTH), Foundation for Research and Technology - Hellas (FORTH), Universität Stuttgart Stuttgart, Large Scale Collaborative Data Mining (LACODAM), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), Vienna University of Technology = Technische Universität Wien (TU Wien), Aalborg University Denmark (AAU) |
المصدر: | WWW 2024 - ACM Web Conference ; https://inria.hal.science/hal-04881765 ; WWW 2024 - ACM Web Conference, May 2024, Singapore, Singapore. pp.2085 - 2093, ⟨10.1145/3589334.3645557⟩ |
بيانات النشر: | CCSD ACM |
سنة النشر: | 2024 |
مصطلحات موضوعية: | Data provenance, Theory of computation→Data provenance, • Information systems→World WideWeb, Database query processing, Knowledge graphs, SPARQL, RDF, How-provenance, [INFO]Computer Science [cs], [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] |
جغرافية الموضوع: | Singapore |
الوصف: | International audience ; The popularity of Knowledge Graphs (KGs) both in industry and academia owes credit to their flexible data model, suitable for data integration from multiple sources. Several KG-based applications such as trust assessment or view maintenance on dynamic data rely on the ability to compute provenance explanations for query results. The how-provenance of a query result is an expression that encodes the records (triples or facts) that explain its inclusion in the result set. This article proposes NPCS, a Native Provenance Computation approach for SPARQL queries. NPCS annotates query results with their how-provenance. By building upon spm-provenance semirings, NPCS supports both monotonic and non-monotonic SPARQL queries. Thanks to its reliance on query rewriting techniques, the approach is directly applicable to already deployed SPARQL engines using different reification schemes -including RDF-star. Our experimental evaluation on two popular SPARQL engines (GraphDB and Stardog) shows that our novel query rewriting brings a significant runtime improvement over existing query rewriting solutions, scaling to RDF graphs with billions of triples. |
نوع الوثيقة: | conference object |
اللغة: | English |
DOI: | 10.1145/3589334.3645557 |
الاتاحة: | https://inria.hal.science/hal-04881765 https://inria.hal.science/hal-04881765v1/document https://inria.hal.science/hal-04881765v1/file/WWW24.pdf https://doi.org/10.1145/3589334.3645557 |
Rights: | http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess |
رقم الانضمام: | edsbas.D73F184B |
قاعدة البيانات: | BASE |
DOI: | 10.1145/3589334.3645557 |
---|