Academic Journal
The role of the number of filaments in the dissociation of CO 2 in dielectric barrier discharges
العنوان: | The role of the number of filaments in the dissociation of CO 2 in dielectric barrier discharges |
---|---|
المؤلفون: | Douat, Claire, Ponduri, Srinath, Boumans, T., Guaitella, Olivier, Welzel, Stefan, Carbone, Emile, Engeln, Richard |
المساهمون: | Groupe de recherches sur l'énergétique des milieux ionisés (GREMI), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Eindhoven University of Technology Eindhoven (TU/e), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Dutch Institute for Fundamental Energy Research Eindhoven (DIFFER), Institut National de la Recherche Scientifique Québec (INRS), ASML VELDHOVEN (ASML), ASML Netherlands B.V., European Project: 606889,EC:FP7:PEOPLE,FP7-PEOPLE-2013-ITN,RAPID(2013) |
المصدر: | ISSN: 0963-0252. |
بيانات النشر: | CCSD IOP Publishing |
سنة النشر: | 2023 |
مصطلحات موضوعية: | [PHYS]Physics [physics] |
الوصف: | International audience ; Abstract An experimental investigation of the dissociation of CO2 in a symmetric pin-to-pin dielectric barrier discharge (DBD) is presented. The reactor geometry allows for an accurate control of the number of filaments (microdischarges) and is used to study the impact of one single filament on the CO2 dissociation. We show the number of filaments per half cycle follows a power-law with as a function of the injected power and does not depend on pressure, flow or other process parameters. It is shown that for pressures between 200 and 700 mbar approximately 0.5 W per filament is required and the charge transferred per filament remains constant at 0.5 nC. Furthermore, the dependence of CO2 conversion on only specific energy input is shown to be valid down to a single filament. Additionally, by using quantum cascade laser (QCL) absorption spectroscopy the absolute number of CO molecules produced per filament is measured and is found to be in the range from 5.1011 to 2.1012. The conversion degree of CO2 into CO is estimated to be lower than 0.1% within a single filament and increases with specific energy input. In the presence of a couple of filaments, the maximum energy efficiency obtained is 25%. A comparison of the conversion degrees in pin-to-pin DBD and plane-to-plane DBD configuration shows that these two reactor geometries follow the same power law. This means the geometry is not the most important parameter in CO2 dissociation in DBDs, but the specific energy input and thus the number of filaments ignited per unit of time. This result means that the dependence of conversion degree on the specific energy input can be extended to a single filament. This observation leads to the conclusion that the specific energy input appears to be valid as a universal scaling parameter down to very low values. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
Relation: | info:eu-repo/grantAgreement/EC/FP7/606889/EU/Reactive Atmospheric Plasma processIng - eDucation network/RAPID |
DOI: | 10.1088/1361-6595/acceca |
الاتاحة: | https://hal.science/hal-04076679 https://hal.science/hal-04076679v1/document https://hal.science/hal-04076679v1/file/pdf.pdf https://doi.org/10.1088/1361-6595/acceca |
Rights: | info:eu-repo/semantics/OpenAccess |
رقم الانضمام: | edsbas.D6A16046 |
قاعدة البيانات: | BASE |
DOI: | 10.1088/1361-6595/acceca |
---|