Academic Journal
Changes in the parameters of extreme temperature events in the western part of the Russian Arctic according to ERA5 and MERRA-2 reanalyses in 1980–2022 ; Изменения параметров экстремальных температурных событий западной части Российской Арктики по данным реанализов ERA5 и MERRA-2 в 1980–2022 гг.
العنوان: | Changes in the parameters of extreme temperature events in the western part of the Russian Arctic according to ERA5 and MERRA-2 reanalyses in 1980–2022 ; Изменения параметров экстремальных температурных событий западной части Российской Арктики по данным реанализов ERA5 и MERRA-2 в 1980–2022 гг. |
---|---|
المؤلفون: | I. V. Serykh, A. G. Kostianoy, И. В. Серых, А. Г. Костяной |
المساهمون: | I.V. Serykh carried out this study within the Federal assignment to the Shirshov Institute of Oceanology RAS on the Project N FMWE-2021-0003 “Large-scale, wave and eddy ocean processes and the role of the ocean in climate formation: interdecadal evolution of circulation, ocean hydrophysical fields and flows at the ocean-atmosphere boundary in a changing climate”. A.G. Kostianoy carried out this study in the framework of the Russian Science Foundation Project N 21-77-30010 “System analysis of the dynamics of geophysical processes in the Russian Arctic and their impact on the development and functioning of the railway transport infrastructure” (2021–2024). The authors express their gratitude to the anonymous reviewers for their attention to the work, their positive criticisms and comments, which allowed us to significantly improve the quality of the work., И.В. Серых выполнил данное исследование в рамках государственного задания Института океанологии им. П.П. Ширшова РАН по теме № FMWE-2021-0003 «Крупномасштабные, волновые и вихревые океанские процессы и роль океана в формировании климата: междекадная эволюция циркуляции, гидрофизических полей океана и потоков на границе океан-атмосфера в условиях меняющегося климата». А.Г. Костяной выполнил данное исследование в рамках проекта РНФ № 21-77-30010 «Системный анализ динамики геофизических процессов в российской Арктике и их воздействие на развитие и функционирование инфраструктуры железнодорожного транспорта» (2021–2024 гг.). Авторы выражают свою благодарность двум анонимным рецензентам за их внимание к работе, их благожелательную критику и сделанные замечания, учет которых позволил коренным образом повысить качество работы. |
المصدر: | Arctic and Antarctic Research; Том 69, № 4 (2023); 464-485 ; Проблемы Арктики и Антарктики; Том 69, № 4 (2023); 464-485 ; 2618-6713 ; 0555-2648 |
بيانات النشر: | Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт |
سنة النشر: | 2023 |
مصطلحات موضوعية: | экстремальные события, Barents Sea, climate warming, extreme events, Kara Sea, Northwest Russia, temperature anomalies, White Sea, Баренцево море, Белое море, Карское море, потепление климата, северо-запад России, температура воздуха |
الوصف: | The air temperature in the Arctic zone of Russia is increasing at a rate of 0.71 °C per decade, which is three times faster than the global average. The warming of climate is accompanied by an increase in its extremeness, which leads to an increase in the number of dangerous hydrometeorological phenomena. The most significant changes occurred in the statistics of large-scale summer heat waves in European Russia. One of the most important goals in studying current climate changes is to study the frequency of extreme hydrometeorological phenomena, in particular, heat or cold waves. In this paper, we investigate the average daily anomalies relative to the annual variation of air temperature at a height of 2 meters from the surface in the region of the western part of the Russian Arctic (60°–75° N, 30°–85° E), according to ERA5 and MERRA-2 atmospheric reanalyses for the period 1980–2022. Their root-mean-square deviations and the distribution of their average number per year are calculated. We have plotted the fields of average values and the rate of changes in the amplitude, duration and number of anomalous temperature events which exceed two standard deviations in the study region. Areas of increase and decrease in the amplitude, duration and number of extreme events, both with positive and negative temperature anomalies, are displayed. In general, it can be concluded that, on average, the amplitudes of positive extreme air temperature anomalies in the study area slightly increase. The duration of positive extreme anomalies is growing everywhere at a rate of 0.2 days per 10 years. The duration of negative extreme anomalies slightly decreases. The number of events with negative extreme anomalies has been decreasing at a rate of –0.5 to –3 events per year for 10 years, while the number of events with positive extreme anomalies has been increasing from 0.1 to 1 events per year for 10 years.The results obtained significantly expand our knowledge of the spatiotemporal features of the ongoing changes in the extreme ... |
نوع الوثيقة: | article in journal/newspaper |
وصف الملف: | application/pdf |
اللغة: | Russian |
Relation: | https://www.aaresearch.science/jour/article/view/575/269; Катцов В.М. (ред.) Третий оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации. СПб.: Наукоемкие технологии; 2022. 126 с. https://www.meteorf.gov.ru/upload/pdf_download/compressed.pdf (дата обращения: 01.12.2023); Isaksen K., Nordli Ø., Ivanov B., Køltzow M.A.Ø., Aaboe S., Gjelten H.M., Mezghani A., Eastwood S., Førland E., R.E. Benestad, Hanssen-Bauer I., Brækkan R., Sviashchennikov P., Demin V., Revina A., Karandasheva T. Exceptional warming over the Barents area. Sci. Rep. 2022; 12: 9371. https://doi.org/10.1038/s41598-022-13568-5; Overland J. Arctic Climate Extremes. Atmosphere. 2022;13(10):1670. https://doi.org/10.3390/atmos13101670; Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge: Cambridge University Press; 2023. https://doi.org/10.1017/9781009157896; Kostianoy A.G., Serykh I.V., Ekba Ya.A., Kravchenko P.N. Climate variability of extreme air temperature events in the Eastern Black Sea. Ecologica Montenegrina. 2017; 14: 21–29.; Kostianoy A.G., Serykh I.V., Kostianaia E.A. Climate change in the Lake Skadar region. In: Pesic V., Karaman G., Kostianoy A.G. (eds.) The Skadar/Shkodra Lake Environment. Springer International Publishing AG, Cham, Switzerland; 2018. P. 63–88.; Серых И.В., Костяной А.Г. О климатических изменениях температуры Баренцева моря и их возможных причинах. В кн.: Лисицин А.П. (ред.) Система Баренцева моря. М.: Геос; 2021. С. 166–179. https://doi.org/10.29006/978-5-6045110-0-8; Nastos P.T., Kostianoy A.G., Serykh I.V., Chronis T. The Aegean Sea air temperature changes. In: Anagnostou С., Kostianoy A., Mariolakos I., Panayotidis P., Soilemezidou M., Tsaltas G. (eds.) The Aegean Sea Environment: Anthropogenic Presence and Impact. Cham: Springer International Publishing AG; 2023. https://doi.org/10.1007/698_2022_904; Кислов А.В., Матвеева Т.А., Платонов В.С. Экстремумы скорости ветра в Арктике. Фундаментальная и прикладная климатология. 2015;2:63–80.; Кислов А.В., Матвеева Т.А. Экстремумы скорости ветра в Европейском секторе Арктики. Метеорология и гидрология.2016;7:5–14.; Zheleznova I. V., Gushchina D. Yu. Variability of extreme air temperatures and precipitation in different natural zones in the late 20th and early 21st centuries according to ERA5 reanalysis data. Izvestiya, Atmospheric and Oceanic Physics. 2023; 59(5): 479–488.; Киктев Д.Б., Круглова Е.Н., Куликова И.А., Муравьев А.В. Экстремальные метеорологические явления на сезонных и внутрисезонных интервалах времени в контексте изменения климата. Гидрометеорологические исследования и прогнозы. 2021; 1(379): 36–57. https://doi.org/10.37162/2618-9631-2021-1-36-57; Серых И.В., Толстиков А.В. Изменения климата западной части Российской Арктики в 1980–2021 гг. Часть 1. Температура воздуха, осадки, ветер. Проблемы Арктики и Антарктики. 2022; 68(3): 258–277. https://doi.org/10.30758/0555-2648-2022-68-3-258-277; Серых И.В., Толстиков А.В. Изменения климата западной части Российской Арктики в 1980–2021 гг. Часть 2. Температура почвы, снег, влажность. Проблемы Арктики и Антарктики. 2022; 68(4): 352–369. https://doi.org/10.30758/0555-2648-2022-68-4-352-369; Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Sabater J.M., Nicolas J.P., Peubey C., Radu R. Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D.P., Diamantakis M., Dragani R., Flemming J., Forbes R.M., Fuentes M., Geer A.J., Haimberger L., Healy S., Hogan R., Holm E.V., Janiskova M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnóti G., De Rosnay P., Rozum I., Vamborg F., Sébastien V., Thépaut J.-N. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020; 146: 1999–2049. https://doi.org/10.1002/qj.3803; Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A. M., Gu W., Kim G., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era retrospective analysis for research and applications, Version 2 (MERRA-2). Journal of Climate. 2017; 30(14): 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1; Rienecker M.M., Suarez M.J., Gelaro R., Todling R., Bacmeister J., Liu E., Bosilovich M.G., Schubert S.D., Takacs L., Kim G., Bloom S., Chen J., Collins D., Conaty A., da Silva A., Gu W., Joiner J., Koster R.D., Lucchesi R., Molod A., Owens T., Pawson S., Pegion P., Redder C.R., Reichle R., Robertson F.R., Ruddick A.G., Sienkiewicz M., Woollen J. MERRA: NASA’s Modern- Era retrospective analysis for research and applications. Journal of Climate. 2011; 24(14): 3624– 3648. https://doi.org/10.1175/JCLI-D-11-00015.1; Molod A., Takacs L., Suarez M., Bacmeister J. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA-2. Geosci. Model Dev. Discuss. 2015; 8(5): 1339–1356. https://doi.org/10.5194/gmd-8-1339-2015; Wu W.-S., Purser R.J., Parrish D.F. Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev. 2002; 130: 2905–2916. https://doi.org/10.1175/15200493(2002)1302.0.CO;2; Luo B., Minnett, P.J., Szczodrak M., Nalli N.R., Morris V.R. Accuracy assessment of MERRA-2 and ERA-Interim sea-surface temperature, air temperature and humidity profiles over the Atlantic Ocean using AEROSE measurements. Journal of Climate. 2020; 33(16): 6889–6909. https://doi.org/10.1175/JCLI-D-19-0955.1; Gvishiani A.D., Rozenberg I.N., Soloviev A.A., Kostianoy A.G., Gvozdik S.A., Serykh I.V., Krasnoperov R.I., Sazonov N.V., Dubchak I.A., Popov A.B., Kostianaia E.A., Gvozdik G.A. Electronic atlas of climatic changes in hydrometeorological parameters of the western part of the Russian Arctic for 1950–2021 as geoinformatic support of railway development. Applied Sciences. 2023; 13(9): 5278. https://doi.org/10.3390/app13095278; Серых И.В., Костяной А.Г., Лебедев С.А., Костяная Е.А. О переходе температурного режима региона Белого моря в новое фазовое состояние. Фундаментальная и прикладная гидрофизика. 2022; 15(1): 98–111. https://doi.org/10.59887/fpg/k9x4-p8fz-5kz6 Serykh I.V., Kostianoy A.G., Lebedev S.A., Kostianaia E.A. On the transition of temperature regime of the White Sea Region to a new phase state. Fundamental and Applied Hydrophysics. 2022; 15(1): 98–111. https://doi.org/10.59887/fpg/k9x4-p8fz-5kz6; Serykh I.V., Kostianoy A.G. Seasonal and interannual variability of the Barents Sea temperature. Ecologica Montenegrina. 2019; 25: 1–13.; Bulygina O.N., Razuvaev V.N., Korshunova N.N., Groisman P.Y. Climate variations and changes in extreme climate events in Russia. Environmental Research Letters. 2007; 2(4): 045020. https:// doi.org/10.1088/1748-9326/2/4/045020; Shikhov A.N., Abdullin R.K., Tarasov A.V. Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia). Geography, Environment, Sustainability. 2020; 13(2): 154–165. https://doi.org/10.24057/2071-9388-2019-42; Lan H., Guo D., Hua W., Pepin N., Sun J. Evaluation of reanalysis air temperature and precipitation in high-latitude Asia using ground-based observations. International Journal of Climatology. 2023; 43(3): 1621–1638. https://doi.org/10.1002/joc.7937; Bosilovich M. G. Regional climate and variability of NASA MERRA and recent reanalyses: U.S. summertime precipitation and temperature. J. Appl. Meteorol. Climatol. 2013; 52(8): 1939–1951. https://doi.org/10.1175/JAMC-D-12-0291.1; Tilinina N., Gulev S.K., Rudeva I., Koltermann K.P. Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses.J. Clim. 2013; 26: 6419–6438. https://doi.org/10.1175/JCLI-D-12-00777.1; Bentamy A., Piollé J.F., Grouazel A., Danielson R., Gulev S., Paul F., Azelmat H., Mathieu P.P., von Schuckmann K., Sathyendranath S., Evers-King H., Esau I., Johannessen J.A., Clayson C.A., Pinker R.T., Grodsky S.A., Bourassa M., Smith S.R., Haines K., Valdivieso M., Josey S.A. Review and assessment of latent and sensible heat flux accuracy over the global oceans. Remote Sens. Environ. 2017; 201: 196–218. https://doi.org/10.1016/j.rse.2017.08.016; Taszarek M., Pilguj N., Allen J.T., Gensini V., Brooks H.E., Szuster P. Comparison of convective parameters derived from ERA5 and MERRA-2 with Rawinsonde data over Europe and North America. J. Climate. 2021; 34: 3211–3237. https://doi.org/10.1175/JCLI-D-20-0484.1; Koster R.D., McCarty W., Coy L., Gelaro R., Huang A., Merkova D., Smith E.B., Sienkiewicz M., Wargan K. MERRA-2 input observations: summary and assessment. In: Randal D. Koster (ed.) Technical report series on global modeling and data assimilation.NASA/TM-2016-104606. 2016; 46. 51 p. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160014544.pdf. (accessed: 20.11.2023); Shafiee M., Maadani O., Cobo J.H. Comparison between MERRA-2 and CWEEDS for use in pavement mechanistic-empirical design in Canada. Canadian Journal of Civil Engineering. 2023; 50(9). https://doi.org/10.1139/cjce-2022-0384; https://www.aaresearch.science/jour/article/view/575 |
DOI: | 10.30758/0555-2648-2023-69-4-464-485 |
الاتاحة: | https://www.aaresearch.science/jour/article/view/575 https://doi.org/10.30758/0555-2648-2023-69-4-464-485 |
Rights: | Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
رقم الانضمام: | edsbas.D5777936 |
قاعدة البيانات: | BASE |
DOI: | 10.30758/0555-2648-2023-69-4-464-485 |
---|