Academic Journal

A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems

التفاصيل البيبلوغرافية
العنوان: A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems
المؤلفون: Roland Braune (Department of Business Decisions and Analytics, Faculty of Business, Economics and Statistics, University of Vienna), Frank Benda (Department of Business Administration, Faculty of Business, Economics and Statistics, University of Vienna), Karl F. Doerner (Department of Business Decisions and Analytics, Faculty of Business, Economics and Statistics, University of Vienna), Richard F. Hartl (Department of Business Decisions and Analytics, Faculty of Business, Economics and Statistics, University of Vienna)
المصدر: International Journal of Production Economics ; issn:0925-5273
بيانات النشر: Elsevier BV
سنة النشر: 2022
المجموعة: University of Vienna: Phaidra
مصطلحات موضوعية: Flexible shop scheduling, Genetic programming, Machine learning, Iterative dispatching rule, Multi-tree representation
الوصف: The abstract is available here: https://uscholar.univie.ac.at/o:1588373
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: hdl:11353/10.1588373; https://phaidra.univie.ac.at/o:1588373
DOI: 10.1016/j.ijpe.2021.108342
الاتاحة: https://doi.org/10.1016/j.ijpe.2021.108342
https://phaidra.univie.ac.at/o:1588373
Rights: http://creativecommons.org/licenses/by/4.0/ ; © 2021 The Authors
رقم الانضمام: edsbas.D458D2FE
قاعدة البيانات: BASE
الوصف
DOI:10.1016/j.ijpe.2021.108342