Impact of the Pre-Processing in AI-Based Classification at Mm-Waves

التفاصيل البيبلوغرافية
العنوان: Impact of the Pre-Processing in AI-Based Classification at Mm-Waves
المؤلفون: Zidane, Flora, Lanteri, Jerôme, Marot, Julien, Migliaccio, Claire
المساهمون: Laboratoire d'Electronique, Antennes et Télécommunications (LEAT), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA), Institut FRESNEL (FRESNEL), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
المصدر: IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting ; https://hal.science/hal-03710922 ; IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Jul 2022, denver, United States. pp.203-204, ⟨10.1109/AP-S/USNC-URSI47032.2022.9886369⟩ ; https://ieeexplore.ieee.org/document/9886369
بيانات النشر: HAL CCSD
سنة النشر: 2022
المجموعة: HAL Université Côte d'Azur
مصطلحات موضوعية: Training, Fast Fourier transforms, Conferences, Millimeter wave measurements, Millimeter wave technology, Imaging, Distance measurement, [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism
جغرافية الموضوع: denver, United States
الوصف: International audience ; Based on various applications involving millimeter- wave (mm-wave) imaging, we highlight the importance of processing the measurements prior to their classification with Artificial Intelligence (AI) algorithms. The key point for enabling a good classification accuracy is to obtain the same structure for the training and the test datasets. Throughout the paper, we discuss a set of pre-processing methods, ranging from 2-DimensionalFast Fourier Transform (2D-FFT) with or without segmentation to 3-Dimensional Fast Fourier Transform (3D-FFT), and their influence on the final classification results.
نوع الوثيقة: conference object
اللغة: English
Relation: hal-03710922; https://hal.science/hal-03710922
DOI: 10.1109/AP-S/USNC-URSI47032.2022.9886369
الاتاحة: https://hal.science/hal-03710922
https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886369
رقم الانضمام: edsbas.D390AE0C
قاعدة البيانات: BASE
الوصف
DOI:10.1109/AP-S/USNC-URSI47032.2022.9886369