Academic Journal

A nice subclass of functionally countable spaces

التفاصيل البيبلوغرافية
العنوان: A nice subclass of functionally countable spaces
المؤلفون: Tkachuk, Vladimir V.
بيانات النشر: Charles University in Prague, Faculty of Mathematics and Physics
سنة النشر: 2018
المجموعة: DML-CZ (Czech Digital Mathematics Library)
مصطلحات موضوعية: keyword:countably compact space, keyword:Lindelöf space, keyword:Lindelöf $P$-space, keyword:functionally countable space, keyword:exponentially separable space, keyword:retraction, keyword:scattered space, keyword:extent, keyword:Sokolov space, keyword:weakly Sokolov space, keyword:function space, msc:54C35, msc:54D65, msc:54G10, msc:54G12
الوصف: summary:A space $X$ is {functionally countable} if $f(X)$ is countable for any continuous function $f\colon X \to {\mathbb{R}}$. We will call a space $X$ {exponentially separable} if for any countable family ${\mathcal{F}}$ of closed subsets of $X$, there exists a countable set $A\subset X$ such that $A\cap \bigcap {\mathcal{G}}\neq\emptyset$ whenever ${\mathcal{G}}\subset {\mathcal{F}}$ and $\bigcap {\mathcal{G}}\neq\emptyset$. Every exponentially separable space is functionally countable; we will show that for some nice classes of spaces exponential separability coincides with functional countability. We will also establish that the class of exponentially separable spaces has nice categorical properties: it is preserved by closed subspaces, countable unions and continuous images. Besides, it contains all Lindelöf $P$-spaces as well as some wide classes of scattered spaces. In particular, if a scattered space is either Lindelöf or ${\omega}$-bounded, then it is exponentially separable.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
تدمد: 0010-2628
1213-7243
Relation: mr:MR3861562; zbl:Zbl 06940880; reference:[1] Engelking R.: General Topology.Mathematical Monographs, 60, Polish Scientific Publishers, Warsaw, 1977. Zbl 0684.54001, MR 0500780; reference:[2] Kannan V., Rajagopalan M.: Scattered spaces II.Illinois J. Math. 21 (1977), no. 4, 735–751. MR 0474180; reference:[3] Moore J. T.: A solution to the $L$ space problem.J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl 1107.03056, MR 2220104, 10.1090/S0894-0347-05-00517-5; reference:[4] Mrówka S.: Some set-theoretic constructions in topology.Fund. Math. 94 (1977), no. 2, 83–92. MR 0433388, 10.4064/fm-94-2-83-92; reference:[5] Rojas-Hernández R., Tkachuk V. V.: A monotone version of the Sokolov property and monotone retractability in function spaces.J. Math. Anal. Appl. 412 (2014), no. 1, 125–137. MR 3145787, 10.1016/j.jmaa.2013.10.043; reference:[6] Sokolov G. A.: Lindelöf spaces of continuous functions.Matem. Zametki 39 (1986), no. 6, 887–894, 943 (Russian). MR 0855936; reference:[7] Telgársky R.: Spaces defined by topological games.Fund. Math. 88 (1975), no. 3, 193–223. MR 0380708, 10.4064/fm-88-3-193-223; reference:[8] Tkachuk V. V.: A nice class extracted from $C_p$-theory.Comment. Math. Univ. Carolin. 46 (2005), no. 3, 503–513. MR 2174528; reference:[9] Tkachuk V. V.: A $C_p$-theory Problem Book. Topological and Function Spaces.Problem Books in Mathematics, Springer, New York, 2011. Zbl 1222.54002, MR 3024898; reference:[10] Tkachuk V. V.: A $C_p$-theory Problem Book. Special Features of Function Spaces.Problem Books in Mathematics, Springer, Cham, 2014. MR 3243753; reference:[11] Tkachuk V. V.: A $C_p$-theory Problem Book. Compactness in Function Spaces.Problem Books in Mathematics, Springer, Cham, 2015. MR 3364185; reference:[12] Tkachuk V. V.: Lindelöf $P$-spaces need not be Sokolov.Math. Slovaca 67 (2017), no. 1, 227–234. MR 3630168, 10.1515/ms-2016-0262; reference:[13] Uspenskij V. V.: On the spectrum of frequencies of function spaces.Vestnik Moskov. Univ. Ser. I Mat. Mekh. 37 (1982), no. 1, 31–35 (Russian. English summary). MR 0650600
الاتاحة: http://hdl.handle.net/10338.dmlcz/147407
Rights: access:Unrestricted ; rights:DML-CZ Czech Digital Mathematics Library, http://dml.cz/ ; rights:Institute of Mathematics AS CR, http://www.math.cas.cz/ ; conditionOfUse:http://dml.cz/use
رقم الانضمام: edsbas.D329EF16
قاعدة البيانات: BASE