Learning Preference Models with Sparse Interactions of Criteria

التفاصيل البيبلوغرافية
العنوان: Learning Preference Models with Sparse Interactions of Criteria
المؤلفون: Herin, Margot, Perny, Patrice, Sokolovska, Nataliya
المساهمون: DECISION, LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)
المصدر: IJCAI 2023 - The 32nd International Joint Conference On Artificial Intelligence ; https://hal.science/hal-04103355 ; IJCAI 2023 - The 32nd International Joint Conference On Artificial Intelligence, Aug 2023, Macao, China
بيانات النشر: HAL CCSD
سنة النشر: 2023
مصطلحات موضوعية: Machine Learning, Knowledge Representation and Reasoning, Uncertainty, [INFO]Computer Science [cs], [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
جغرافية الموضوع: Macao, China
الوصف: International audience ; Multicriteria decision making requires defining the result of conflicting and possibly interacting criteria. Allowing criteria interactions in a decision model increases the complexity of the preference learning task due to the combinatorial nature of the possible interactions. In this paper, we propose an approach to learn a decision model in which the interaction pattern is revealed from preference data and kept as simple as possible. We consider weighted aggregation functions like multilinear utilities or Choquet integrals, admitting representations including non-linear terms measuring the joint benefit or penalty attached to some combinations of criteria. The weighting coefficients known as Möbius masses model positive or negative synergies among criteria. We propose an approach to learn the Möbius masses, based on iterative reweighted least square for sparse recovery, and dualization to improve scalability. This approach is applied to learn sparse representations of the multilinear utility model and conjunctive/disjunctive forms of the discrete Choquet integral from preferences examples, in aggregation problems possibly involving more than 20 criteria.
نوع الوثيقة: conference object
اللغة: English
Relation: hal-04103355; https://hal.science/hal-04103355
الاتاحة: https://hal.science/hal-04103355
رقم الانضمام: edsbas.D2F43D9A
قاعدة البيانات: BASE