Academic Journal

On a parabolic problem with nonlinear Newton boundary conditions

التفاصيل البيبلوغرافية
العنوان: On a parabolic problem with nonlinear Newton boundary conditions
المؤلفون: Feistauer, Miloslav, Najzar, Karel, Švadlenka, Karel
بيانات النشر: Charles University in Prague, Faculty of Mathematics and Physics
سنة النشر: 2002
المجموعة: DML-CZ (Czech Digital Mathematics Library)
مصطلحات موضوعية: keyword:parabolic convection-diffusion equation, keyword:nonlinear Newton boundary condition, keyword:Galerkin method, keyword:compactness method, keyword:finite element approximation, keyword:error estimates, msc:35A35, msc:35D05, msc:35K57, msc:35K60, msc:65M60, msc:65N15, msc:65N30
الوصف: summary:The paper is concerned with the study of a parabolic initial-boundary value problem with nonlinear Newton boundary condition considered in a two-dimensional domain. The goal is to prove the existence and uniqueness of a weak solution to the problem in the case when the nonlinearity in the Newton boundary condition does not satisfy any monotonicity condition and to analyze the finite element approximation.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
تدمد: 0010-2628
1213-7243
Relation: mr:MR1920519; zbl:Zbl 1090.35102; reference:[1] Barber S.A.: Soil Nutrient Bioavailability: A Mechanistic Approach.John Wiley & Sons, Inc., New York, 1995.; reference:[2] Bialecki R., Nowak A.J.: Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions.Appl. Math. Model. 5 (1981), 417-421. Zbl 0475.65078; reference:[3] Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods.Springer, New York, 1994. Zbl 1135.65042, MR 1278258; reference:[4] Chow S.S.: Finite element error estimates for nonlinear elliptic equations of monotone type.Numer. Math. 54 (1989), 373-393. MR 0972416; reference:[5] Ciarlet P.G.: The Finite Element Method for Elliptic Problems.North Holland, Amsterdam, 1978. Zbl 0547.65072, MR 0520174; reference:[6] Ciarlet P.G., Raviart P.A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element method.in: The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations (A.K. Aziz, Ed.), Academic Press, New York, 1972. MR 0421108; reference:[7] Claassen N., Barber S.A.: Simulation model for nutrient uptake from soil by a growing plant root system.Agronomy Journal 68 (1976), 961-964.; reference:[8] Cwikel M.: Real and complex interpolation and extrapolation of compact operators.Duke Math. J. 65.2 (1992), 333-343. Zbl 0787.46062, MR 1150590; reference:[9] Dolejší V., Feistauer M., Schwab C.: A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems.preprint, Forschungsinstitut für Mathematik, ETH Zürich, January 2001 (to appear in Calcolo). MR 1901200; reference:[10] Feistauer M.: Mathematical Methods in Fluid Mechanics.The Pitman Monographs and Surveys in Pure and Applied Mathematics 67, Longman Scientific and Technical Series, Harlow, 1993. MR 1266627; reference:[11] Feistauer M., Kalis H., Rokyta M.: Mathematical modelling of an electrolysis process.Comment Math. Univ. Carolinae 30 (1989), 465-477. Zbl 0704.35021, MR 1031864; reference:[12] Feistauer M., Najzar K.: Finite element approximation of a problem with a nonlinear Newton boundary condition.Numer. Math. 78 (1998), 403-425. Zbl 0888.65118, MR 1603350; reference:[13] Feistauer M., Najzar K., Sobotíková V.: Error estimates for the finite element solution of elliptic problems with nonlinear Newton boundary conditions.Numer. Funct. Anal. Optim. 20 (1999), 835-851. MR 1728186; reference:[14] Feistauer M., Najzar K., Sobotíková V.: On the finite element analysis of problems with nonlinear Newton boundary conditions in nonpolygonal domains.Appl. Math. 46 (2001), 353-382. Zbl 1066.65124, MR 1925193; reference:[15] Feistauer M., Najzar K., Sobotíková V., Sváček P.: Numerical analysis of problems with nonlinear Newton boundary conditions.in: Proc. of the 3rd European Conference Numerical Mathematics and Advanced Applications (P. Neittaanmäki, T. Tiihonen, P. Tarvainen, Editors), World Scientific, Singapore, 2000, pp.486-493.; reference:[16] Feistauer M., Sobotíková V.: Finite element approximation of nonlinear elliptic problems with discontinuous coefficients.M$^{2}$AN 24 (1990), 457-500. MR 1070966; reference:[17] Feistauer M., Ženíšek A.: Finite element solution of nonlinear elliptic problems.Numer. Math. 50 (1987), 451-475. MR 0875168; reference:[18] Ganesh M., Graham I.G., Sivaloganathan J.: A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity.SIAM J. Numer. Anal. 31 (1994), 1378-1414. Zbl 0815.41008, MR 1293521; reference:[19] Ganesh M., Steinbach O.: Boundary element methods for potential problems with nonlinear boundary conditions.Applied Mathematics Report AMR98/17, School of Mathematics, The University of New South Wales, Sydney, 1998. Zbl 0971.65107; reference:[20] Ganesh M., Steinbach O.: Nonlinear boundary integral equations for harmonic problems.Applied Mathematics Report AMR98/20, School of Mathematics, The University of New South Wales, Sydney, 1998. Zbl 0974.65112, MR 1738277; reference:[21] Girault V., Raviart P.A.: Finite Element Approximation of the Navier-Stokes Equations.Lecture Notes in Mathematics 749, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl 0441.65081, MR 0548867; reference:[22] Křížek M., Liu L., Neittaanmäki P.: Finite element analysis of a nonlinear elliptic problem with a pure radiation condition.in: Applied Nonlinear Analysis, Kluwer, Amsterdam, 1999, pp.271-280. MR 1727454; reference:[23] Kufner A., John O., Fučík S.: Function Spaces.Academia, Prague, 1977. MR 0482102; reference:[24] Kurzweil J.: Ordinary Differential Equations.Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986. Zbl 0756.34003, MR 0929466; reference:[25] Lions J.L.: Quelques méthodes de résolution des problémes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0248.35001, MR 0259693; reference:[26] Lions J.L., Magenes E.: Problémes aux limites non homogénes et applications.Dunod, Paris, 1968. Zbl 0212.43801; reference:[27] Liu L., Křížek M.: Finite element analysis of a radiation heat transfer problem.J. Comput. Math. 16 (1998), 327-336.; reference:[28] Málek J., Nečas J., Rokyta M., Růžička M.: Weak and Measure-Valued Solutions to Evolutionary PDEs.Chapman & Hall, London, 1996. MR 1409366; reference:[29] Moreau R., Ewans J.W.: An analysis of the hydrodynamics of aluminium reduction cells.J. Electrochem. Soc. 31 (1984), 2251-2259.; reference:[30] Nečas J.: Les méthodes directes en théories des équations elliptiques.Academia, Prague, 1967. MR 0227584; reference:[31] Sváček P.: Higher order finite element method for a problem with nonlinear boundary condition.in: Proc. of the 13th Summer School ``Software and Algorithms of Numerical Mathematics'', West Bohemian University Pilsen, 1999, pp.301-308.; reference:[32] Temam R.: Navier-Stokes Equations.North-Holland, Amsterdam-New York-Oxford, 1977. Zbl 1157.35333, MR 0603444; reference:[33] Ženíšek A.: Nonhomogeneous boundary conditions and curved triangular finite elements.Appl. Math. 26 (1981), 121-141. MR 0612669; reference:[34] Ženíšek A.: The finite element method for nonlinear elliptic equations with discontinuous coefficients.Numer. Math. 58 (1990), 51-77. MR 1069653; reference:[35] Zlámal M.: Curved elements in the finite element method.I. SIAM J. Numer. Anal. 10 (1973), 229-240. MR 0395263
الاتاحة: http://hdl.handle.net/10338.dmlcz/119333
Rights: access:Unrestricted ; rights:DML-CZ Czech Digital Mathematics Library, http://dml.cz/ ; rights:Institute of Mathematics AS CR, http://www.math.cas.cz/ ; conditionOfUse:http://dml.cz/use
رقم الانضمام: edsbas.D219960A
قاعدة البيانات: BASE