Exploiting Robot Redundancy for Online Learning and Control

التفاصيل البيبلوغرافية
العنوان: Exploiting Robot Redundancy for Online Learning and Control
المؤلفون: Ficorilli, Marco, Modugno, Valerio, De Luca, Alessandro, Capotondi, Marco
بيانات النشر: Zenodo
سنة النشر: 2022
المجموعة: Zenodo
مصطلحات موضوعية: model learning, redundant robot, variance optimization
الوصف: Accurate trajectory tracking in the task space is crit- ical in many robotics applications. Model-based robot controllers are able to ensure very good tracking but lose effectiveness in the presence of model uncertainties. On the other hand, online learning-based control laws can handle poor dynamic modeling, as long as prediction errors are kept small and decrease over time. However, in the case of redundant robots directly controlled in the task space, this condition is not usually met. We present an online learning-based control framework that exploits robot redundancy so as to increase the overall performance and shorten the learning transient. The validity of the proposed approach is shown through a comparative study conducted in simulation on a KUKA LWR4+ robot.
نوع الوثيقة: conference object
اللغة: unknown
Relation: https://zenodo.org/communities/irim-2022; https://doi.org/10.5281/zenodo.7531279; https://doi.org/10.5281/zenodo.7531280; oai:zenodo.org:7531280
DOI: 10.5281/zenodo.7531280
الاتاحة: https://doi.org/10.5281/zenodo.7531280
Rights: info:eu-repo/semantics/openAccess ; Creative Commons Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.D19FECFB
قاعدة البيانات: BASE