Academic Journal

AC^0[p] Lower Bounds Against MCSP via the Coin Problem

التفاصيل البيبلوغرافية
العنوان: AC^0[p] Lower Bounds Against MCSP via the Coin Problem
المؤلفون: Golovnev, Alexander, Ilango, Rahul, Impagliazzo, Russell, Kabanets, Valentine, Kolokolova, Antonina, Tal, Avishay
المساهمون: Alexander Golovnev and Rahul Ilango and Russell Impagliazzo and Valentine Kabanets and Antonina Kolokolova and Avishay Tal
بيانات النشر: Schloss Dagstuhl – Leibniz-Zentrum für Informatik
سنة النشر: 2019
المجموعة: DROPS - Dagstuhl Research Online Publication Server (Schloss Dagstuhl - Leibniz Center for Informatics )
مصطلحات موضوعية: Minimum Circuit Size Problem (MCSP), circuit lower bounds, AC0[p], coin problem, hybrid argument, MKTP, biased random boolean functions
الوصف: Minimum Circuit Size Problem (MCSP) asks to decide if a given truth table of an n-variate boolean function has circuit complexity less than a given parameter s. We prove that MCSP is hard for constant-depth circuits with mod p gates, for any prime p >= 2 (the circuit class AC^0[p]). Namely, we show that MCSP requires d-depth AC^0[p] circuits of size at least exp(N^{0.49/d}), where N=2^n is the size of an input truth table of an n-variate boolean function. Our circuit lower bound proof shows that MCSP can solve the coin problem: distinguish uniformly random N-bit strings from those generated using independent samples from a biased random coin which is 1 with probability 1/2+N^{-0.49}, and 0 otherwise. Solving the coin problem with such parameters is known to require exponentially large AC^0[p] circuits. Moreover, this also implies that MAJORITY is computable by a non-uniform AC^0 circuit of polynomial size that also has MCSP-oracle gates. The latter has a few other consequences for the complexity of MCSP, e.g., we get that any boolean function in NC^1 (i.e., computable by a polynomial-size formula) can also be computed by a non-uniform polynomial-size AC^0 circuit with MCSP-oracle gates.
نوع الوثيقة: article in journal/newspaper
conference object
وصف الملف: application/pdf
اللغة: English
Relation: Is Part Of LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019); https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.66
DOI: 10.4230/LIPIcs.ICALP.2019.66
الاتاحة: https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://nbn-resolving.org/urn:nbn:de:0030-drops-106422
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.66
Rights: https://creativecommons.org/licenses/by/3.0/legalcode
رقم الانضمام: edsbas.D0ED1436
قاعدة البيانات: BASE
الوصف
DOI:10.4230/LIPIcs.ICALP.2019.66