Academic Journal

An Adaptive in Space, Stabilized Finite Element Method via Residual Minimization for Linear and Nonlinear Unsteady Advection–Diffusion–Reaction Equations

التفاصيل البيبلوغرافية
العنوان: An Adaptive in Space, Stabilized Finite Element Method via Residual Minimization for Linear and Nonlinear Unsteady Advection–Diffusion–Reaction Equations
المؤلفون: Juan F. Giraldo, Victor M. Calo
المصدر: Mathematical and Computational Applications; Volume 28; Issue 1; Pages: 7
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2023
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: residual minimization, unsteady advection–diffusion equations, discontinuous Galerkin, implicit time-marching schemes, adaptive mesh refinement
الوصف: We construct a stabilized finite element method for linear and nonlinear unsteady advection–diffusion–reaction equations using the method of lines. We propose a residual minimization strategy that uses an ad-hoc modified discrete system that couples a time-marching schema and a semi-discrete discontinuous Galerkin formulation in space. This combination delivers a stable continuous solution and an on-the-fly error estimate that robustly guides adaptivity at every discrete time. We show the performance of advection-dominated problems to demonstrate stability in the solution and efficiency in the adaptivity strategy. We also present the method’s robustness in the nonlinear Bratu equation in two dimensions.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: https://dx.doi.org/10.3390/mca28010007
DOI: 10.3390/mca28010007
الاتاحة: https://doi.org/10.3390/mca28010007
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.D0DD5EAD
قاعدة البيانات: BASE