التفاصيل البيبلوغرافية
العنوان: |
An Adaptive in Space, Stabilized Finite Element Method via Residual Minimization for Linear and Nonlinear Unsteady Advection–Diffusion–Reaction Equations |
المؤلفون: |
Juan F. Giraldo, Victor M. Calo |
المصدر: |
Mathematical and Computational Applications; Volume 28; Issue 1; Pages: 7 |
بيانات النشر: |
Multidisciplinary Digital Publishing Institute |
سنة النشر: |
2023 |
المجموعة: |
MDPI Open Access Publishing |
مصطلحات موضوعية: |
residual minimization, unsteady advection–diffusion equations, discontinuous Galerkin, implicit time-marching schemes, adaptive mesh refinement |
الوصف: |
We construct a stabilized finite element method for linear and nonlinear unsteady advection–diffusion–reaction equations using the method of lines. We propose a residual minimization strategy that uses an ad-hoc modified discrete system that couples a time-marching schema and a semi-discrete discontinuous Galerkin formulation in space. This combination delivers a stable continuous solution and an on-the-fly error estimate that robustly guides adaptivity at every discrete time. We show the performance of advection-dominated problems to demonstrate stability in the solution and efficiency in the adaptivity strategy. We also present the method’s robustness in the nonlinear Bratu equation in two dimensions. |
نوع الوثيقة: |
text |
وصف الملف: |
application/pdf |
اللغة: |
English |
Relation: |
https://dx.doi.org/10.3390/mca28010007 |
DOI: |
10.3390/mca28010007 |
الاتاحة: |
https://doi.org/10.3390/mca28010007 |
Rights: |
https://creativecommons.org/licenses/by/4.0/ |
رقم الانضمام: |
edsbas.D0DD5EAD |
قاعدة البيانات: |
BASE |