Academic Journal

Performance analysis of data-driven and physics-informed machine learning methods for thermal-hydraulic processes in Full-scale Emplacement experiment

التفاصيل البيبلوغرافية
العنوان: Performance analysis of data-driven and physics-informed machine learning methods for thermal-hydraulic processes in Full-scale Emplacement experiment
المؤلفون: Hu, Guang, Prasianakis, Nikolaos, Churakov, Sergey V., Pfingsten, Wilfried
المساهمون: European Union's Research and Innovation
المصدر: Applied Thermal Engineering ; volume 245, page 122836 ; ISSN 1359-4311
بيانات النشر: Elsevier BV
سنة النشر: 2024
المجموعة: ScienceDirect (Elsevier - Open Access Articles via Crossref)
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1016/j.applthermaleng.2024.122836
الاتاحة: http://dx.doi.org/10.1016/j.applthermaleng.2024.122836
https://api.elsevier.com/content/article/PII:S1359431124005040?httpAccept=text/xml
https://api.elsevier.com/content/article/PII:S1359431124005040?httpAccept=text/plain
Rights: https://www.elsevier.com/tdm/userlicense/1.0/ ; http://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.CD74E3BE
قاعدة البيانات: BASE
الوصف
DOI:10.1016/j.applthermaleng.2024.122836