Academic Journal

Neural Networks for Driver Behavior Analysis

التفاصيل البيبلوغرافية
العنوان: Neural Networks for Driver Behavior Analysis
المؤلفون: Martinelli, Fabio, Marulli, Fiammetta, Mercaldo, Francesco, Santone, Antonella
المصدر: MDPI - Electronics - Special Issue Security and Trust in Next Generation Cyber-Physical Systems, (2021-02-01)
بيانات النشر: Zenodo
سنة النشر: 2021
المجموعة: Zenodo
مصطلحات موضوعية: Automotive, Artificial Intelligence, Neural Network, Machine Learning, Deep Learning, Safety
الوصف: The proliferation of info-entertainment systems in nowadays vehicles has provided a really cheap and easy-to-deploy platform with the ability to gather information about the vehicle under analysis. With the purpose to provide an architecture to increase safety and security in automotive context, in this paper we propose a fully connected neural network architecture considering position-based features aimed to detect in real-time: (i) the driver, (ii) the driving style and (iii) the path. The experimental analysis performed on real-world data shows that the proposed method obtains encouraging results.
نوع الوثيقة: article in journal/newspaper
اللغة: unknown
Relation: https://zenodo.org/communities/cybersane_h2020; https://doi.org/10.3390/electronics10030342; oai:zenodo.org:4555253
DOI: 10.3390/electronics10030342
الاتاحة: https://doi.org/10.3390/electronics10030342
Rights: info:eu-repo/semantics/openAccess ; Creative Commons Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.CCF2BB66
قاعدة البيانات: BASE
الوصف
DOI:10.3390/electronics10030342