Academic Journal
Schrödinger invariance and space-time symmetries Malte Henkel a and Jérémie Unterberger b a Laboratoire de Physique des Matériaux, 1
العنوان: | Schrödinger invariance and space-time symmetries Malte Henkel a and Jérémie Unterberger b a Laboratoire de Physique des Matériaux, 1 |
---|---|
المؤلفون: | Université Henri Poincaré Nancy I |
المساهمون: | The Pennsylvania State University CiteSeerX Archives |
المصدر: | http://arxiv.org/pdf/hep-th/0302187v1.pdf. |
سنة النشر: | 2003 |
المجموعة: | CiteSeerX |
مصطلحات موضوعية: | Schrödinger invariance, conformal invariance, Ward identity, energy-momentum tensor, parabolic subalgebra, response function, ageing 1 |
الوصف: | The free Schrödinger equation with mass M can be turned into a non-massive Klein-Gordon equation via Fourier transformation with respect to M. The kinematic symmetry algebra sch d of the free d-dimensional Schrödinger equation with M fixed appears therefore naturally as a parabolic subalgebra of the complexified conformal algebra conf d+2 in d + 2 dimensions. The explicit classification of the parabolic subalgebras of conf 3 yields physically interesting dynamic symmetry algebras. This allows us to propose a new dynamic symmetry group relevant for the description of ageing far from thermal equilibrium, with a dynamical exponent z = 2. The Ward identities resulting from the invariance under conf d+2 and its parabolic subalgebras are derived and the corresponding free-field energy-momentum tensor is constructed. We also derive the scaling form and the causality conditions for the two- and three-point functions and their relationship with response functions in the context of Martin-Siggia-Rose theory. |
نوع الوثيقة: | text |
وصف الملف: | application/pdf |
اللغة: | English |
Relation: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.266.5372; http://arxiv.org/pdf/hep-th/0302187v1.pdf |
الاتاحة: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.266.5372 http://arxiv.org/pdf/hep-th/0302187v1.pdf |
Rights: | Metadata may be used without restrictions as long as the oai identifier remains attached to it. |
رقم الانضمام: | edsbas.CC3F803C |
قاعدة البيانات: | BASE |
الوصف غير متاح. |