Relation: |
https://revistas.unal.edu.co/index.php/rcolquim/article/view/76918/72859; https://revistas.unal.edu.co/index.php/rcolquim/article/view/76918/73039; https://revistas.unal.edu.co/index.php/rcolquim/article/view/76918/73040; M. Muneer and C. Boxall, “Photocatalyzed degradation of a pesticide derivative glyphosate in aqueous suspensions of titanium dioxide,” Int. J. Photoenergy, vol. 2008, pp. 27–29, 2008.; D. F. Tzaskos, C. Marcovicz, N. M. P. Dias, and N. D. Rosso, “Development of sampling for quantification of glyphosate in natural waters,” Ciência e Agrotecnologia, vol. 36, no. 4, pp. 399–405, 2012.; D. Becerra, “Acople de procesos fotocatalíticos y biológicos para el tratamiento de aguas residuales con residuos de plaguicidas,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.; M. R. Assalin, S. G. de Moraes, S. C. N. Queiroz, V. L. Ferracini, and N. Duran, “Studies on degradation of glyphosate by several oxidative chemical processes: Ozonation, photolysis and heterogeneous photocatalysis,” J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, vol. 45, no. 1, pp. 89–94, 2010.; Ministerio de Justicia y del Derecho, “Identificacion del herbicida glifosato propiedades y toxicidad.,” Doc. Plan Manejo Ambient. Errad. Cultiv. Ilícitos, pp. 1–51, 2000.; C. Campuzano Cortina, L. M. Feijoó Fonnegra, K. Manzur Pineda, M. Palacio Muñoz, J. Rendón Fonnegra, and J. P. Zapata Díaz, “Efectos de la intoxicación por glifosato en la población agrícola: revisión de tema,” Rev. CES Salud Pública, vol. 8, no. 1, pp. 121–133, 2017.; R. Labrada, J. C. Caseley, and C. Parker, “Manejo de Malezas para Países en Desarrollo. (Estudio FAO Producción y Protección Vegetal- 120).” [Online]. Available: http://www.fao.org/docrep/T1147S/t1147s00.htm.; A. Villalba, “Resistencia a herbicidas . Glifosato * Resistance to Herbicides . Glyphosate *,” vol. 2009, pp. 169–186.; “Encuentran glifosato en algodón, gasas, hisopos, toallitas y tampones.” [Online]. Available: http://www.exactas.unlp.edu.ar/articulo/2015/10/21/encuentran_glifosato_en_algodon__gasas__hisopos__toallitas_y_tampones.; N. Areerachakul, S. Vigneswaran, H. H. Ngo, and J. Kandasamy, “Granular activated carbon (GAC) adsorption-photocatalysis hybrid system in the removal of herbicide from water,” Sep. Purif. Technol., vol. 55, no. 2, pp. 206–211, Jun. 2007.; B. Abramovic, V. Anderluh, D. Sojic, and F. Gaál, “Photocatalytic removal of the herbicide clopyralid from water,” J. Serbian Chem. Soc., vol. 72, no. 12, pp. 1477–1486, 2007.; S. Chen and Y. Liu, “Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst,” Chemosphere, vol. 67, no. 5, pp. 1010–1017, Mar. 2007.; C. Y. Guarín-Llanes and A. Mera-Benavides, “Fotocatálisis Heterogénea Con Tio2 Para El Tratamiento De Desechos Líquidos Con Presencia Del Indicador Verde De Bromocresol,” Rev. Ing. Univ. Medellín, vol. 10, no. 19, pp. 79–87, 2011.; K. Umar et al., “Synthesis of visible light active doped TiO2 for the degradation of organic pollutants—methylene blue and glyphosate,” J. Anal. Sci. Technol., vol. 7, no. 1, p. 29, 2016.; C. J. Kong et al., “High throughput photo-oxidations in a packed bed reactor system.,” Bioorg. Med. Chem., 2017.; M. Hajaghazadeh, V. Vaiano, D. Sannino, H. Kakooei, R. Sotudeh-Gharebagh, and P. Ciambelli, “Heterogeneous photocatalytic oxidation of methyl ethyl ketone under UV-A light in an LED-fluidized bed reactor,” Catal. Today, vol. 230, pp. 79–84, 2014.; W. Zhou et al., “Nanopaper based on Ag/TiO 2 nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants,” J. Hazard. Mater., vol. 197, pp. 19–25, 2011.; M. F. J. Dijkstra, H. Buwalda, A. W. F. De Jong, A. Michorius, J. G. M. Winkelman, and A. A. C. M. Beenackers, “Experimental comparison of three reactor designs for photocatalytic water purification,” Chem. Eng. Sci., vol. 56, no. 2, pp. 547–555, 2001.; A. Ibrahim, W. Phoohinkong, W. Mekprasart, and W. Pecharapa, “Anatase/Rutile TiO2 composite thin films prepared via dip coating technique and their hydrophilicity, stability and photocatalytic activity,” Mater. Today Proc., vol. 5, no. 5, pp. 10903–10909, 2018.; P. Praveen, G. Viruthagiri, S. Mugundan, and N. Shanmugam, “Sol-gel synthesis and characterization of pure and manganese doped TiO2nanoparticles - A new NLO active material,” Spectrochim. Acta- Part A Mol. Biomol. Spectrosc., vol. 120, pp. 548–557, 2014.; Ruslan, M. Mirzan, M. Nurdin, and A. W. Wahab, “Characterization and photocurrent response of Mn-N-TiO2/Ti electrode: Approach for Chemical Oxygen Demand (COD) sensor,” Int. J. Appl. Chem., vol. 12, no. 3, pp. 399–410, 2016.; K. Olurode, G. M. Neelgund, A. Oki, and Z. Luo, “A facile hydrothermal approach for construction of carbon coating on TiO2 nanoparticles,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 89, pp. 333–336, 2012.; S. Chowdhury, R. Mishra, P. Saha, and P. Kushwaha, “Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk,” Desalination, vol. 265, no. 1–3, pp. 159–168, Jan. 2011.; W. Plazinski, J. Dziuba, and W. Rudzinski, “Modeling of sorption kinetics: The pseudo-second order equation and the sorbate intraparticle diffusivity,” Adsorption, vol. 19, no. 5, pp. 1055–1064, 2013.; O. Tünay, E. Metin, T. Olmez-Hanci, and I. Kabdasli, “8Th iwa symposium on waste management problems in agro-industries- agro’2011: Adsorption of textile reactive dyestuffs by treatment sludges of inorganic nature,” Environ. Technol. (United Kingdom), vol. 33, no. 13, pp. 1467–1475, 2012.; https://revistas.unal.edu.co/index.php/rcolquim/article/view/76918 |