Academic Journal

Evaluation of a reactor for the photocatalytic degradation of glyphosate with a catalyst TiO2-Mn ; Evaluación de un reactor para la degradación fotocatalítica de glifosato empleando un catalizador de TiO2-Mn ; Avaliação de reator para a degradação fotocatalítica do glifosato usando um catalisador de TiO2-Mn

التفاصيل البيبلوغرافية
العنوان: Evaluation of a reactor for the photocatalytic degradation of glyphosate with a catalyst TiO2-Mn ; Evaluación de un reactor para la degradación fotocatalítica de glifosato empleando un catalizador de TiO2-Mn ; Avaliação de reator para a degradação fotocatalítica do glifosato usando um catalisador de TiO2-Mn
المؤلفون: Suárez Escobar, Andrés Felipe, Guevara Correa, Daniela, Méndez Quintero, María Camila, Mendoza Abella, José Felipe, Álvarez Cabrera, Judith Andrea
المصدر: Revista Colombiana de Química; Vol. 48 Núm. 3 (2019); 19-25 ; Revista Colombiana de Química; v. 48 n. 3 (2019); 19-25 ; Revista Colombiana de Química; Vol. 48 No. 3 (2019); 19-25 ; 2357-3791 ; 0120-2804
بيانات النشر: Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química
سنة النشر: 2019
المجموعة: Universidad Nacional de Colombia: Portal de Revistas UN
مصطلحات موضوعية: Doped TiO2, heterogeneous photocatalysis, continuous reactor, Applied Chemistry, Environmental Sciences, TiO2 dopado, fotocatálisis heterogénea, reactor continuo, Química Aplicada, Ciencias Ambientales, fotocatálise heterogênea, adsorção, reator contínuo, Ciências Ambientais
الوصف: In this work, the photocatalytic degradation of the herbicide glyphosate in aqueous solution was evaluated. Assays were performed on a commercial catalyst (TiO2 Degussa P25) and a catalyst synthesized from TiO2 doped with manganese (TiO2-Mn) supported on borosilicate rings, with an internal and external diameter of 6.52 mm and 7.59 mm respectively, and an approximate length of 9.43 mm, using a continuous packed bed reactor. The synthesized catalyst was characterized with techniques as FTIR, SEM-EDS, and AFM, which allowed to evaluating its chemical and physical properties. The reactor operating conditions were a feed flow rate of 4.25 mL min-1 of a pH 4.45 glyphosate solution and retention time of 1 h and 25 min. In such experiments, heterogeneous photocatalysis, photolysis, and adsorption test were carried out for 150 min, obtaining results of degradation percentages and the order of photocatalytic reaction for the catalyst supported in the rings and the powder in suspension. From the removal studies, a maximum degradation percentage of 39.19% was reached with TiO2-Mn supported in the rings. In contrast, the commercial catalyst TiO2 Degussa P25 had a 28.6% of removal. The glyphosate degradation follows an intraparticle diffusion model due to a diffusive process, where the glyphosate molecule is adsorbed in the catalyst pores and then degraded. ; En el presente trabajo se evaluó la degradación fotocatalítica del herbicida glifosato en solución acuosa con un catalizador comercial (TiO2 Degussa P25) y un catalizador sintetizado a partir de TiO2 dopado con manganeso (TiO2-Mn), soportados en anillos de borosilicato de diámetro interno y externo de 6,52 mm y 7,59 mm, respectivamente, y una longitud aproximada de 9,43 mm, mediante el uso de un reactor continuo de lecho empacado. El catalizador fue caracterizado por FTIR, SEM-EDS y AFM, con lo cual se determinaron algunas propiedades físicas y químicas del mismo. Las condiciones de operación del reactor fueron un caudal de alimentación de 4,25 mL min-1 de una solución ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf; text/html; application/xml
اللغة: Spanish; Castilian
Relation: https://revistas.unal.edu.co/index.php/rcolquim/article/view/76918/72859; https://revistas.unal.edu.co/index.php/rcolquim/article/view/76918/73039; https://revistas.unal.edu.co/index.php/rcolquim/article/view/76918/73040; M. Muneer and C. Boxall, “Photocatalyzed degradation of a pesticide derivative glyphosate in aqueous suspensions of titanium dioxide,” Int. J. Photoenergy, vol. 2008, pp. 27–29, 2008.; D. F. Tzaskos, C. Marcovicz, N. M. P. Dias, and N. D. Rosso, “Development of sampling for quantification of glyphosate in natural waters,” Ciência e Agrotecnologia, vol. 36, no. 4, pp. 399–405, 2012.; D. Becerra, “Acople de procesos fotocatalíticos y biológicos para el tratamiento de aguas residuales con residuos de plaguicidas,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.; M. R. Assalin, S. G. de Moraes, S. C. N. Queiroz, V. L. Ferracini, and N. Duran, “Studies on degradation of glyphosate by several oxidative chemical processes: Ozonation, photolysis and heterogeneous photocatalysis,” J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, vol. 45, no. 1, pp. 89–94, 2010.; Ministerio de Justicia y del Derecho, “Identificacion del herbicida glifosato propiedades y toxicidad.,” Doc. Plan Manejo Ambient. Errad. Cultiv. Ilícitos, pp. 1–51, 2000.; C. Campuzano Cortina, L. M. Feijoó Fonnegra, K. Manzur Pineda, M. Palacio Muñoz, J. Rendón Fonnegra, and J. P. Zapata Díaz, “Efectos de la intoxicación por glifosato en la población agrícola: revisión de tema,” Rev. CES Salud Pública, vol. 8, no. 1, pp. 121–133, 2017.; R. Labrada, J. C. Caseley, and C. Parker, “Manejo de Malezas para Países en Desarrollo. (Estudio FAO Producción y Protección Vegetal- 120).” [Online]. Available: http://www.fao.org/docrep/T1147S/t1147s00.htm.; A. Villalba, “Resistencia a herbicidas . Glifosato * Resistance to Herbicides . Glyphosate *,” vol. 2009, pp. 169–186.; “Encuentran glifosato en algodón, gasas, hisopos, toallitas y tampones.” [Online]. Available: http://www.exactas.unlp.edu.ar/articulo/2015/10/21/encuentran_glifosato_en_algodon__gasas__hisopos__toallitas_y_tampones.; N. Areerachakul, S. Vigneswaran, H. H. Ngo, and J. Kandasamy, “Granular activated carbon (GAC) adsorption-photocatalysis hybrid system in the removal of herbicide from water,” Sep. Purif. Technol., vol. 55, no. 2, pp. 206–211, Jun. 2007.; B. Abramovic, V. Anderluh, D. Sojic, and F. Gaál, “Photocatalytic removal of the herbicide clopyralid from water,” J. Serbian Chem. Soc., vol. 72, no. 12, pp. 1477–1486, 2007.; S. Chen and Y. Liu, “Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst,” Chemosphere, vol. 67, no. 5, pp. 1010–1017, Mar. 2007.; C. Y. Guarín-Llanes and A. Mera-Benavides, “Fotocatálisis Heterogénea Con Tio2 Para El Tratamiento De Desechos Líquidos Con Presencia Del Indicador Verde De Bromocresol,” Rev. Ing. Univ. Medellín, vol. 10, no. 19, pp. 79–87, 2011.; K. Umar et al., “Synthesis of visible light active doped TiO2 for the degradation of organic pollutants—methylene blue and glyphosate,” J. Anal. Sci. Technol., vol. 7, no. 1, p. 29, 2016.; C. J. Kong et al., “High throughput photo-oxidations in a packed bed reactor system.,” Bioorg. Med. Chem., 2017.; M. Hajaghazadeh, V. Vaiano, D. Sannino, H. Kakooei, R. Sotudeh-Gharebagh, and P. Ciambelli, “Heterogeneous photocatalytic oxidation of methyl ethyl ketone under UV-A light in an LED-fluidized bed reactor,” Catal. Today, vol. 230, pp. 79–84, 2014.; W. Zhou et al., “Nanopaper based on Ag/TiO 2 nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants,” J. Hazard. Mater., vol. 197, pp. 19–25, 2011.; M. F. J. Dijkstra, H. Buwalda, A. W. F. De Jong, A. Michorius, J. G. M. Winkelman, and A. A. C. M. Beenackers, “Experimental comparison of three reactor designs for photocatalytic water purification,” Chem. Eng. Sci., vol. 56, no. 2, pp. 547–555, 2001.; A. Ibrahim, W. Phoohinkong, W. Mekprasart, and W. Pecharapa, “Anatase/Rutile TiO2 composite thin films prepared via dip coating technique and their hydrophilicity, stability and photocatalytic activity,” Mater. Today Proc., vol. 5, no. 5, pp. 10903–10909, 2018.; P. Praveen, G. Viruthagiri, S. Mugundan, and N. Shanmugam, “Sol-gel synthesis and characterization of pure and manganese doped TiO2nanoparticles - A new NLO active material,” Spectrochim. Acta- Part A Mol. Biomol. Spectrosc., vol. 120, pp. 548–557, 2014.; Ruslan, M. Mirzan, M. Nurdin, and A. W. Wahab, “Characterization and photocurrent response of Mn-N-TiO2/Ti electrode: Approach for Chemical Oxygen Demand (COD) sensor,” Int. J. Appl. Chem., vol. 12, no. 3, pp. 399–410, 2016.; K. Olurode, G. M. Neelgund, A. Oki, and Z. Luo, “A facile hydrothermal approach for construction of carbon coating on TiO2 nanoparticles,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 89, pp. 333–336, 2012.; S. Chowdhury, R. Mishra, P. Saha, and P. Kushwaha, “Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk,” Desalination, vol. 265, no. 1–3, pp. 159–168, Jan. 2011.; W. Plazinski, J. Dziuba, and W. Rudzinski, “Modeling of sorption kinetics: The pseudo-second order equation and the sorbate intraparticle diffusivity,” Adsorption, vol. 19, no. 5, pp. 1055–1064, 2013.; O. Tünay, E. Metin, T. Olmez-Hanci, and I. Kabdasli, “8Th iwa symposium on waste management problems in agro-industries- agro’2011: Adsorption of textile reactive dyestuffs by treatment sludges of inorganic nature,” Environ. Technol. (United Kingdom), vol. 33, no. 13, pp. 1467–1475, 2012.; https://revistas.unal.edu.co/index.php/rcolquim/article/view/76918
الاتاحة: https://revistas.unal.edu.co/index.php/rcolquim/article/view/76918
Rights: Derechos de autor 2019 Revista Colombiana de Química ; https://creativecommons.org/licenses/by/4.0
رقم الانضمام: edsbas.CC16CBF5
قاعدة البيانات: BASE