Conference
Multifrequency Highly Oscillating Aperiodic Amplitude Estimation for Nonlinear Chirp Signal
العنوان: | Multifrequency Highly Oscillating Aperiodic Amplitude Estimation for Nonlinear Chirp Signal |
---|---|
المؤلفون: | Emelchenkov, Anton, Fontaine, Mathieu, Grenier, Yves, Mahé, Hervé, Roueff, François |
المساهمون: | VALEO, Signal, Statistique et Apprentissage (S2A), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom Paris (IMT)-Télécom Paris-Institut Mines-Télécom Paris (IMT)-Télécom Paris, Département Images, Données, Signal (IDS), Télécom ParisTech |
المصدر: | European Signal Processing Conference (EUSIPCO) ; https://hal.science/hal-04614241 ; European Signal Processing Conference (EUSIPCO), Aug 2024, Lyon, France |
بيانات النشر: | HAL CCSD |
سنة النشر: | 2024 |
مصطلحات موضوعية: | chirp signal, amplitude estimation, locally stationary process, filtering, hyperparameters estimation, nonlinear chirp signal, [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing |
جغرافية الموضوع: | Lyon, France |
الوصف: | International audience ; This paper addresses the challenge of estimating multiple highly oscillating amplitudes within the nonlinear chirp signal model. The problem is analogous to the mode detection task with fixed instantaneous frequencies, where the oscillating amplitudes signify mechanical vibrations concealing crucial information for predictive maintenance. Existing methods often focus on single-frequency estimation, employ simple amplitude functions, or impose strong noise assumptions. Furthermore, these methods frequently rely on arbitrarily chosen hyperparameters, leading to sub-optimal generalization for a diverse range of amplitudes. To address these limitations, our approach introduces two estimators, based on Capon filters and negative log-likelihood approaches respectively, that leverage locally stationary assumptions and incorporate hyperparameters estimation. The results demonstrate that, even under challenging conditions, these estimators yield competitive outcomes across various noisy scenarios, mitigating the drawbacks associated with existing methods. |
نوع الوثيقة: | conference object |
اللغة: | English |
Relation: | hal-04614241; https://hal.science/hal-04614241; https://hal.science/hal-04614241/document; https://hal.science/hal-04614241/file/EUSIPCO_2024____Anton_Emelchenkov_Capon_Campbell_MLE_final.pdf |
الاتاحة: | https://hal.science/hal-04614241 https://hal.science/hal-04614241/document https://hal.science/hal-04614241/file/EUSIPCO_2024____Anton_Emelchenkov_Capon_Campbell_MLE_final.pdf |
Rights: | info:eu-repo/semantics/OpenAccess |
رقم الانضمام: | edsbas.CA776DBF |
قاعدة البيانات: | BASE |
الوصف غير متاح. |