Academic Journal

Escape rates for rotor walks in Z d

التفاصيل البيبلوغرافية
العنوان: Escape rates for rotor walks in Z d
المؤلفون: Laura Florescu, Shirshendu Ganguly, Lionel Levine, Yuval Peres
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://www.math.cornell.edu/~levine/escape-rates-rotor-walks.pdf.
سنة النشر: 2013
المجموعة: CiteSeerX
الوصف: Rotor walk is a deterministic analogue of random walk. We study its recurrence and transience properties on Z d for the initial configuration of all rotors aligned. If n particles in turn perform rotor walks starting from the origin, we show that the number that escape (i.e., never return to the origin) is of order n in dimensions d ≥ 3, and of order n / log n in dimension 2. 1
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.432.4645; http://www.math.cornell.edu/~levine/escape-rates-rotor-walks.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.432.4645
http://www.math.cornell.edu/~levine/escape-rates-rotor-walks.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.C8C787E4
قاعدة البيانات: BASE