Academic Journal

spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains

التفاصيل البيبلوغرافية
العنوان: spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains
المؤلفون: Sartore, Luca, GAETAN, Carlo, Fabbris, Paolo
المساهمون: Sartore, Luca, Fabbris, Paolo, Gaetan, Carlo
سنة النشر: 2016
المجموعة: Università Ca’ Foscari Venezia: ARCA (Archivio Istituzionale della Ricerca)
مصطلحات موضوعية: Categorical data, Transition probabilities, Transiogram modeling, Indicator Cokriging, Bayesian entropy, 3D lithological conditional simulation/prediction TRANSITION-PROBABILITY GEOSTATISTICS, MAXIMUM-ENTROPY APPROACH, VARIABLES, PLAIN, HYDROFACIES, PREDICTION, ALGORITHM, AQUIFER, Settore SECS-S/01 - Statistica, Settore GEO/05 - Geologia Applicata
الوصف: The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced methods for data inspection, besides spMC implements Markov Chain models to estimate experimental transition probabilities of categorical lithological data. Furthermore, simulation methods based on most known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package. Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive geostatistical computations, part of the code is implemented for parallel computations via the OpenMP constructs. A final analysis of this computational efficiency compares the simulation/prediction algorithms by using different numbers of CPU cores, and considering the example data set of the case study included in the package. (C) 2016 Elsevier Ltd. All rights reserved.
نوع الوثيقة: article in journal/newspaper
وصف الملف: STAMPA
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000381325700005; volume:94; firstpage:40; lastpage:47; numberofpages:8; journal:COMPUTERS & GEOSCIENCES; http://hdl.handle.net/10278/3673854; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84974686122
DOI: 10.1016/j.cageo.2016.06.001
الاتاحة: http://hdl.handle.net/10278/3673854
https://doi.org/10.1016/j.cageo.2016.06.001
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.C74614F2
قاعدة البيانات: BASE
الوصف
DOI:10.1016/j.cageo.2016.06.001