Academic Journal

Approximate multiple kernel learning with least-angle regression

التفاصيل البيبلوغرافية
العنوان: Approximate multiple kernel learning with least-angle regression
المؤلفون: Stražar, Martin, Curk, Tomaž
المصدر: Neurocomputing, vol. 340, pp. 245-258, 2019. ; ISSN: 0925-2312
بيانات النشر: Elsevier
سنة النشر: 2021
المجموعة: University of Ljubljana: Repository (RUJ) / Repozitorij Univerze v Ljubljani
مصطلحات موضوعية: kernel methods, kernel approximation, multiple kernel learning, least-angle regression, jedrne metode, aproksimacija jeder, učenje z več jedrnimi funkcijami, regresija najmanjših kotov, info:eu-repo/classification/udc/004
الوصف: Kernel methods provide a principled way for general data representations. Multiple kernel learning and kernel approximation are often treated as separate tasks, with considerable savings in time and memory expected if the two are performed simultaneously. Our proposed Mklaren algorithm selectively approximates multiple kernel matrices in regression. It uses Incomplete Cholesky Decomposition and Least-angle regression (LAR) to select basis functions, achieving linear complexity both in the number of data points and kernels. Since it approximates kernel matrices rather than functions, it allows to combine an arbitrary set of kernels. Compared to single kernel-based approximations, it selectively approximates different kernels in different regions of the input spaces. The LAR criterion provides a robust selection of inducing points in noisy settings, and an accurate modelling of regression functions in continuous and discrete input spaces. Among general kernel matrix decompositions, Mklaren achieves minimal approximation rank required for performance comparable to using the exact kernel matrix, at a cost lower than 1% of required operations. Finally, we demonstrate the scalability and interpretability in settings with millions of data points and thousands of kernels.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf; text/url
اللغة: English
Relation: info:eu-repo/grantAgreement/ARRS//P2-0209; info:eu-repo/grantAgreement/ARRS//J7-5460; info:eu-repo/grantAgreement/ARRS//J1-8150; info:eu-repo/grantAgreement/ARRS//J3-9263; https://repozitorij.uni-lj.si/IzpisGradiva.php?id=125566; https://repozitorij.uni-lj.si/Dokument.php?id=141328&dn=; https://repozitorij.uni-lj.si/Dokument.php?id=141327&dn=; https://plus.si.cobiss.net/opac7/bib/1538162883?lang=sl
الاتاحة: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=125566
https://repozitorij.uni-lj.si/Dokument.php?id=141328&dn=
https://repozitorij.uni-lj.si/Dokument.php?id=141327&dn=
https://plus.si.cobiss.net/opac7/bib/1538162883?lang=sl
Rights: http://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.C717F0
قاعدة البيانات: BASE