Academic Journal

Bayesian analysis for mixtures of discrete distributions with a non-parametric component

التفاصيل البيبلوغرافية
العنوان: Bayesian analysis for mixtures of discrete distributions with a non-parametric component
المؤلفون: Alhaji, Baba B, Dai, Hongsheng, Hayashi, Yoshiko, Vinciotti, Veronica, Harrison, Andrew, Lausen, Berthold
بيانات النشر: Informa UK Limited
سنة النشر: 2016
المجموعة: University of Essex Research Repository
مصطلحات موضوعية: QA Mathematics
الوصف: Bayesian finite mixture modelling is a flexible parametric modelling approach for classification and density fitting. Many areas of application require distinguishing a signal from a noise component. In practice, it is often difficult to justify a specific distribution for the signal component; therefore, the signal distribution is usually further modelled via a mixture of distributions. However, modelling the signal as a mixture of distributions is computationally non-trivial due to the difficulties in justifying the exact number of components to be used and due to the label switching problem. This paper proposes the use of a non-parametric distribution to model the signal component. We consider the case of discrete data and show how this new methodology leads to more accurate parameter estimation and smaller false non-discovery rate. Moreover, it does not incur the label switching problem. We show an application of the method to data generated by ChIP-sequencing experiments.
نوع الوثيقة: article in journal/newspaper
وصف الملف: text
اللغة: English
Relation: https://repository.essex.ac.uk/15038/1/Reviewed_paper.pdf; Alhaji, Baba B and Dai, Hongsheng and Hayashi, Yoshiko and Vinciotti, Veronica and Harrison, Andrew and Lausen, Berthold (2016) Bayesian analysis for mixtures of discrete distributions with a non-parametric component. Journal of Applied Statistics, 43 (8). pp. 1369-1385. DOI https://doi.org/10.1080/02664763.2015.1100594
DOI: 10.1080/02664763.2015.1100594
الاتاحة: https://repository.essex.ac.uk/15038/
https://doi.org/10.1080/02664763.2015.1100594
https://repository.essex.ac.uk/15038/1/Reviewed_paper.pdf
رقم الانضمام: edsbas.C58B5E90
قاعدة البيانات: BASE
الوصف
DOI:10.1080/02664763.2015.1100594