Reducing fuel consumption in platooning systems through reinforcement learning

التفاصيل البيبلوغرافية
العنوان: Reducing fuel consumption in platooning systems through reinforcement learning
المؤلفون: Cunha, Rafael, F, Goncalves, Tiago, R, Varma, Vineeth, Elayoubi, Salah, E, Cao, Ming
المساهمون: University of Groningen Groningen, CentraleSupélec, Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), European Project: 771687,ERC-CoG-771687
المصدر: IFAC PaperOnLine ; 6th IFAC Conference on Intelligent Control and Automation Sciences ICONS 2022 ; https://hal.science/hal-03940360 ; 6th IFAC Conference on Intelligent Control and Automation Sciences ICONS 2022, Jul 2022, Cluj-Napoca, Romania. pp.99-104, ⟨10.1016/j.ifacol.2022.07.615⟩
بيانات النشر: HAL CCSD
سنة النشر: 2022
المجموعة: Université de Lorraine: HAL
مصطلحات موضوعية: Vehicle platoons reinforcement learning adaptive cruise control (ACC), Vehicle platoons, reinforcement learning, adaptive cruise control (ACC), [SPI]Engineering Sciences [physics]
جغرافية الموضوع: Cluj-Napoca, Romania
الوصف: International audience ; Fuel efficiency in platooning systems is a central topic of interest because of its significant economic and environmental impact on the transportation industry. In platoon systems, Adaptive Cruise Control (ACC) is widely adopted because it can guarantee string stability while requiring only radar or lidar measurements. A key parameter in ACC is the desired time gap between the platoon's neighboring vehicles. A small time gap results in a short inter-vehicular distance, which is fuel efficient when the vehicles are moving at constant speeds due to air drag reductions. On the other hand, when the vehicles accelerate and brake a lot, a bigger time gap is more fuel efficient. This motivates us to find a policy that minimizes fuel consumption by conveniently switching between two desired time gap parameters. Thus, one can interpret this formulation as a dynamic system controlled by a switching ACC, and the learning problem reduces to finding a switching rule that is fuel efficient. We apply a Reinforcement Learning (RL) algorithm to find a time switching policy between two desired time gap parameters of an ACC controller to reach our goal. We adopt the proximal policy optimization (PPO) algorithm to learn the appropriate transient shift times that minimize the platoon's fuel consumption when it faces stochastic traffic conditions. Numerical simulations show that the PPO algorithm outperforms both static time gap ACC and a threshold-based switching control in terms of the average fuel efficiency.
نوع الوثيقة: conference object
اللغة: English
Relation: info:eu-repo/grantAgreement//771687/EU/CORNEA Controlling evolutionary dynamics of networked autonomous agents/ERC-CoG-771687; hal-03940360; https://hal.science/hal-03940360; https://hal.science/hal-03940360/document; https://hal.science/hal-03940360/file/DRL_approach_to_improve_efficiency_in_platooning_systems.pdf
DOI: 10.1016/j.ifacol.2022.07.615
الاتاحة: https://hal.science/hal-03940360
https://hal.science/hal-03940360/document
https://hal.science/hal-03940360/file/DRL_approach_to_improve_efficiency_in_platooning_systems.pdf
https://doi.org/10.1016/j.ifacol.2022.07.615
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.C3D9AB36
قاعدة البيانات: BASE
الوصف
DOI:10.1016/j.ifacol.2022.07.615