Academic Journal

A revised closed graph theorem for quasi-Suslin spaces

التفاصيل البيبلوغرافية
العنوان: A revised closed graph theorem for quasi-Suslin spaces
المؤلفون: Ferrando, J. C., Kąkol, J., Lopez Pellicer, M.
بيانات النشر: Institute of Mathematics, Academy of Sciences of the Czech Republic
Matematický ústav AV ČR
سنة النشر: 2009
المجموعة: DML-CZ (Czech Digital Mathematics Library)
مصطلحات موضوعية: keyword:$K$-analytic space, keyword:web space, keyword:quasi-Suslin space, msc:46A03, msc:46A30, msc:54C05, msc:54C14, msc:54D08
الوصف: summary:Some results about the continuity of special linear maps between $F$-spaces recently obtained by Drewnowski have motivated us to revise a closed graph theorem for quasi-Suslin spaces due to Valdivia. We extend Valdivia's theorem by showing that a linear map with closed graph from a Baire tvs into a tvs admitting a relatively countably compact resolution is continuous. This also applies to extend a result of De Wilde and Sunyach. A topological space $X$ is said to have a (relatively countably) compact resolution if $X$ admits a covering $\{A_{\alpha }\:\alpha \in \Bbb N^{\Bbb N}\}$ consisting of (relatively countably) compact sets such that $A_{\alpha }\subseteq A_{\beta }$ for $\alpha \leq \beta $. Some applications and two open questions are provided.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
تدمد: 0011-4642
1572-9141
Relation: mr:MR2563582; zbl:Zbl 1224.46004; reference:[1] Cascales, B.: On $K$-analytic locally convex spaces.Arch. Math. 49 (1987), 232-244. Zbl 0617.46014, MR 0906738, 10.1007/BF01271663; reference:[2] Cascales, B., Orihuela, J.: On compactness in locally convex spaces.Math. Z. 195 (1987), 365-381. Zbl 0604.46011, MR 0895307, 10.1007/BF01161762; reference:[3] Christensen, J. P. R.: Topology and Borel Structure. Descriptive Topology and Set Theory with Applications to Functional Analysis and Measure Theory, Vol. 10.North Holland Amsterdam (1974). MR 0348724; reference:[4] Comfort, W. W., Remus, D.: Compact groups of Ulam-measurable cardinality: Partial converse theorems of Arkhangel'skii and Varopoulos.Math. Jap. 39 (1994), 203-210. MR 1270627; reference:[5] Dierolf, P., Dierolf, S., Drewnowski, L.: Remarks and examples concerning unordered Baire-like and ultrabarrelled spaces.Colloq. Math. 39 (1978), 109-116. Zbl 0386.46008, MR 0507270, 10.4064/cm-39-1-109-116; reference:[6] Drewnowski, L.: Resolutions of topological linear spaces and continuity of linear maps.J. Math. Anal. Appl. 335 (2007), 1177-1194. Zbl 1133.46002, MR 2346899, 10.1016/j.jmaa.2007.02.032; reference:[7] Drewnowski, L.: The dimension and codimension of analytic subspaces in topological vector spaces, with applications to the constructions of some pathological topological vector spaces. Liège 1982 (unpublished Math. talk).; reference:[8] Drewnowski, L., Labuda, I.: Sequence $F$-spaces of $L_0$-type over submeasures of $\Bbb N$.(to appear).; reference:[9] Kąkol, J., Pellicer, M. López: Compact coverings for Baire locally convex spaces.J. Math. Anal. Appl. 332 (2007), 965-974. MR 2324313, 10.1016/j.jmaa.2006.10.045; reference:[10] Kelley, J. L., al., I. Namioka et: Linear Topological Spaces.Van Nostrand London (1963). Zbl 0115.09902, MR 0166578; reference:[11] Kōmura, Y.: On linear topological spaces.Kumamoto J. Sci., Ser. A 5 (1962), 148-157. MR 0151817; reference:[12] Nakamura, M.: On quasi-Suslin space and closed graph theorem.Proc. Japan Acad. 46 (1970), 514-517. MR 0282325; reference:[13] Nakamura, M.: On closed graph theorem.Proc. Japan Acad. 46 (1970), 846-849. Zbl 0223.46008, MR 0291757; reference:[14] Carreras, P. Perez, Bonet, J.: Barrelled Locally Convex Spaces, Vol. 131.North Holland Amsterdam (1987). MR 0880207; reference:[15] Rogers, C. A., Jayne, J. E., Dellacherie, C., Topsøe, F., Hoffman-Jørgensen, J., Martin, D. A., Kechris, A. S., Stone, A. H.: Analytic Sets.Academic Press London (1980).; reference:[16] Talagrand, M.: Espaces de Banach faiblement $K$-analytiques.Ann. Math. 110 (1979), 407-438. MR 0554378, 10.2307/1971232; reference:[17] Tkachuk, V. V.: A space $C_p(X) $ is dominated by irrationals if and only if it is $K$-analytic.Acta Math. Hungar. 107 (2005), 253-265. Zbl 1081.54012, MR 2150789, 10.1007/s10474-005-0194-y; reference:[18] Valdivia, M.: Topics in Locally Convex Spaces.North-Holland Amsterdam (1982). Zbl 0489.46001, MR 0671092; reference:[19] Valdivia, M.: Quasi-LB-spaces.J. Lond. Math. Soc. 35 (1987), 149-168. Zbl 0625.46006, MR 0871772
الاتاحة: http://hdl.handle.net/10338.dmlcz/140541
Rights: access:Unrestricted ; rights:DML-CZ Czech Digital Mathematics Library, http://dml.cz/ ; rights:Institute of Mathematics AS CR, http://www.math.cas.cz/ ; conditionOfUse:http://dml.cz/use
رقم الانضمام: edsbas.C233DDA9
قاعدة البيانات: BASE