Academic Journal

Odd vertex magic total labeling of the extended comb graph ∗

التفاصيل البيبلوغرافية
العنوان: Odd vertex magic total labeling of the extended comb graph ∗
المؤلفون: Sajiya Merlin Mahizl, A, Jeba Jesintha, J, Ummatt, Simran
المصدر: Bulletin of Pure & Applied Sciences- Mathematics and Statistics; Vol. 42 No. 1 (2023): Bull. Pure Appl. Sci. Sect. E Math. Stat (Jan-Jun) 2023; 61–66 ; 2320-3226 ; 0970-6577
بيانات النشر: ACS Publisher
سنة النشر: 2023
مصطلحات موضوعية: Magic labeling, vertex magic total labeling, odd vertex magic total label ing, extended comb graph
الوصف: Let G be a simple finite graph with n vertices and m edges. A vertex magic total labeling is a bijection f from V (G) ∪ E(G) to the integers {1, 2, 3, . . . , m + n} with the property that for every v in V (G), f(v) + Σf(uv) = k for some constant k, where the sum is taken over all edges incident with v.The parameter k is called the magic constant for f. Nagaraj et al. (C. T. Nagaraj, C. Y. Ponnappan and G. Prabakaran, Odd vertex magic total labeling of trees, International Journal of Mathematics Trends and Technology, 52(6), 2017, 374–379) introduced the concept of odd vertex magic total labeling. A vertex magic total labeling is called an odd vertex magic total labeling if f(V (G)) = {1, 3, 5, . . . , 2n − 1}. A graph G is called an odd vertex magic if there exists an odd vertex magic total labeling for G. In this paper we prove that the extended comb graph EC (t, k) for k = 2 admits an odd vertex magic total labeling when t is odd and the extended comb graph EC (t, k), k = 2 with an additional edge admits an odd vertex magic total labeling when t is even.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
Relation: https://acspublisher.com/journals/index.php/basm/article/view/8314/7309; https://acspublisher.com/journals/index.php/basm/article/view/8314
DOI: 10.48165/bpas.2023.42E.1.8
الاتاحة: https://acspublisher.com/journals/index.php/basm/article/view/8314
https://doi.org/10.48165/bpas.2023.42E.1.8
رقم الانضمام: edsbas.BE2AB26D
قاعدة البيانات: BASE
الوصف
DOI:10.48165/bpas.2023.42E.1.8