Floating-Point Sparse Matrix-Vector Multiply for FPGAs

التفاصيل البيبلوغرافية
العنوان: Floating-Point Sparse Matrix-Vector Multiply for FPGAs
المؤلفون: deLorimier, Michael, DeHon, André
المساهمون: Schmit, Herman, Wilton, Steve
المصدر: FPGA '05 ACM/SIGDA International Symposium on Field Programmable Gate Arrays 2005, Monterey, CA, February 20-22, 2005
بيانات النشر: ACM
سنة النشر: 2005
المجموعة: Caltech Authors (California Institute of Technology)
مصطلحات موضوعية: Algorithm, Performance, Design, Experimentation, Floating Point, FPGA, Reconfigurable Architecture, Sparse Matrix, Compressed Sparse Row
الوصف: Large, high density FPGAs with high local distributed memory bandwidth surpass the peak floating-point performance of high-end, general-purpose processors. Microprocessors do not deliver near their peak floating-point performance on efficient algorithms that use the Sparse Matrix-Vector Multiply (SMVM) kernel. In fact, it is not uncommon for microprocessors to yield only 10–20% of their peak floating-point performance when computing SMVM. We develop and analyze a scalable SMVM implementation on modern FPGAs and show that it can sustain high throughput, near peak, floating-point performance. For benchmark matrices from the Matrix Market Suite we project 1.5 double precision Gflops/FPGA for a single Virtex II 6000-4 and 12 double precision Gflops for 16 Virtex IIs (750Mflops/FPGA). ; © 2005 ACM. This work was supported by the Microelectronics Advanced Research Consortium (MARCO) and is part of the efforts of the Gigascale Systems Research Center (GSRC). Thanks to Keith Underwood for valuable editorial comments on this writeup.
نوع الوثيقة: book part
اللغة: unknown
Relation: https://doi.org/10.1145/1046192.1046203; eprintid:70921
DOI: 10.1145/1046192.1046203
الاتاحة: https://doi.org/10.1145/1046192.1046203
Rights: info:eu-repo/semantics/closedAccess ; Other
رقم الانضمام: edsbas.BE1E85E7
قاعدة البيانات: BASE