Academic Journal

Optimization of k-Space Trajectories for Compressed Sensing by Bayesian Experimental Design

التفاصيل البيبلوغرافية
العنوان: Optimization of k-Space Trajectories for Compressed Sensing by Bayesian Experimental Design
المؤلفون: Matthias Seeger, Hannes Nickisch, Rolf Pohmann, Bernhard Schölkopf
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://eprints.pascal-network.org/archive/00006336/01/seeger.pdf.
سنة النشر: 2010
المجموعة: CiteSeerX
الوصف: The optimization of k-space sampling for nonlinear sparse MRI reconstruction is phrased as a Bayesian experimental design problem. Bayesian inference is approximated by a novel relaxation to standard signal processing primitives, resulting in an efficient optimization algorithm for Cartesian and spiral trajectories. On clinical resolution brain image data from a Siemens 3T scanner, automatically optimized trajectories lead to significantly improved images, compared to standard low-pass, equispaced, or variable density randomized designs. Insights into the nonlinear design optimization problem for MRI are given.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.331.8014; http://eprints.pascal-network.org/archive/00006336/01/seeger.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.331.8014
http://eprints.pascal-network.org/archive/00006336/01/seeger.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.BDFB8A
قاعدة البيانات: BASE