Academic Journal

Transtension at the Northern Termination of the Alfeo-Etna Fault System (Western Ionian Sea, Italy): Seismotectonic Implications and Relation with Mt. Etna Volcanism

التفاصيل البيبلوغرافية
العنوان: Transtension at the Northern Termination of the Alfeo-Etna Fault System (Western Ionian Sea, Italy): Seismotectonic Implications and Relation with Mt. Etna Volcanism
المؤلفون: Gambino, Salvatore, Barreca, Giovanni, Bruno, Valentina, De Guidi, Giorgio, Ferlito, Carmelo, Gross, Felix, Mattia, Mario, Scarfì, Luciano, Monaco, Carmelo
المساهمون: Dipartimento di Scienze Biologiche Geologiche e Ambientali, Università di Catania, 95129 Catania, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, Institute of Geosciences, Kiel University, 24148 Kiel, Germany
بيانات النشر: MDPI
سنة النشر: 2022
المجموعة: Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
مصطلحات موضوعية: Ionian Sea, Mt. Etna, seismic reflection data, GNSS data, tectonic-driven volcanism, 04.08. Volcanology
الوصف: Offshore data in the western Ionian Sea indicate that the NW–SE-trending dextral shear zone of the Alfeo–Etna Fault System turns to the N–S direction near the Ionian coastline, where the extensional Timpe Fault System is located. Morpho-structural data show that NW–SE-trending right-lateral strikeslip faults connect the Timpe Fault System with the upper slope of the volcano, where the eruptive activity mainly occurs along the N–S to NE–SW-trending fissures. Fault systems are related to the ~E–Wtrending extension and they are seismically active having given rise to shallow and low-moderate magnitude earthquakes in the last 150 years. As a whole, morpho-structural, geodetic and seismological data, seismic profiles and bathymetric maps suggest that similar geometric and kinematic features characterize the shear zone both on the eastern flank of the volcano and in the Ionian offshore. The Alfeo– Etna Fault System probably represents a major kinematic boundary in the western Ionian Sea associated with the Africa–Europe plate convergence since it accommodates, by right-lateral kinematics, the differential motion of adjacent western Ionian compartments. Along this major tectonic alignment, crustal structures such as releasing bends, pull-apart basins and extensional horsetails occur both offshore and on-land, where they probably represent the pathway for magma uprising from depth ; This research was funded by the Catania University PIA.CE.RI. Project (linea 2) “Interaction between volcanic activity and active tectonic processes in the Mt. Etna area (InvultEtna). The research has moreover benefited from funding provided by the agreement between Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile ; Published ; 128 ; 2T. Deformazione crostale attiva ; JCR Journal
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
Relation: Geosciences; /12 (2022); Branca, S.; Coltelli, M.; De Beni, E.; Wijbrans, J. Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data. Geol. Rundsch. 2007, 97, 135–152. https://doi.org/10.1007/s00531-006-0152-0. 2. Barreca, G.; Branca, S.; Monaco, C. Three-Dimensional Modeling of Mount Etna Volcano: Volume Assessment, Trend of Eruption Rates, and Geodynamic Significance. Tectonics 2018, 37, 842–857. https://doi.org/10.1002/2017tc004851. 3. Monaco, C.; Tapponier, P.; Tortorici, L.; Gillot, P.Y. Late Quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily). Earth Planet. Sc. Lett. 1997, 147, 125–139. 4. Giacomoni, P.P.; Ferlito, C.; Alesci, G.; Coltorti, M.; Monaco, C.; Viccaro, M.; Cristofolini, R. A common feeding system of the NE and S rifts as revealed by the bilateral 2002/2003 eruptive event at Mt. Etna (Sicily, Italy). Bull. Volcanol. 2012, 74, 2415–2433. https://doi.org/10.1007/s00445-012-0672-3. 5. Bruno, V.; Ferlito, C.; Mattia, M.; Monaco, C.; Rossi, M.; Scandura, D. Evidence of a shallow magma intrusion beneath the NE Rift system of Mt. Etna during 2013. Terra Nova 2016, 28, 356–363. https://doi.org/10.1111/ter.12228. 6. Branca, S.; Coltelli, M.; Groppelli, G.; Lentini, F. Geological map of Etna volcano, 1:50,000 scale. Ital. J. Geosci. 2011, 130, 265–291. https://doi.org/10.3301/ijg.2011.15. 7. Monaco, C.; Catalano, S.; Cocina, O.; De Guidi, G.; Ferlito, C.; Gresta, S.; Musumeci, C.; Tortorici, L. Tectonic control on the eruptive dynamics at Mt. Etna volcano (eastern Sicily during the 2001 and 2002–2003 eruptions. J. Volcanol. Geother. Res. 2005, 144, 221–233. 8. Gambino, S.; Barreca, G.; Gross, F.; Monaco, C.; Gutscher, M.; Alsop, G.I. Assessing the rate of crustal extension by 2D sequential restoration analysis: A case study from the active portion of the malta escarpment. Basin Res. 2022, 34, 321–341. https://doi.org/10.1111/bre.12621. 9. Polonia, A.; Torelli, L.; Artoni, A.; Carlini, M.; Faccenna, C.; Ferranti, L.; Gasperini, L.; Govers, R.; Klaeschen, D.; Monaco, C.; et al. The Ionian and Alfeo–Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea? Tectonophys. 2016, 675, 69–90. https://doi.org/10.1016/j.tecto.2016.03.016. 10. Gutscher, M.-A.; Dominguez, S.; de Lepinay, B.M.; Pinheiro, L.; Gallais, F.; Babonneau, N.; Cattaneo, A.; Le Faou, Y.; Barreca, G.; Micallef, A.; et al. Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (Ionian Sea). Tectonics 2016, 35, 39–54. https://doi.org/10.1002/2015tc003898. 11. Palano, M.; Ferranti, L.; Monaco, C.; Mattia, M.; Aloisi, M.; Bruno, V.; Cannavò, F.; Siligato, G. GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean. J. Geophys. Res. Earth Surf. 2012, 117, 07401. https://doi.org/10.1029/2012jb009254. 12. De Guidi, G.; Lanzafame, G.; Palano, M.; Puglisi, G.; Scaltrito, A.; Scarfì, L. Multidisciplinary study of the Tindari Fault (Sicily, Italy) separating ongoing contractional and extensional compartments along the active Africa–Eurasia convergent boundary. Tectonophys. 2013, 588, 1–17. https://doi.org/10.1016/j.tecto.2012.11.021. 13. D’Agostino, N.; Selvaggi, G. Crustal motion along the Eurasia-Nubia plate boundary in the Calabrian Arc and Sicily and active extension in the Messina Straits from GPS measurements. J. Geophys. Res. Earth Surf. 2004, 109. https://doi.org/10.1029/2004jb002998. 14. Serpelloni, E.; Bürgmann, R.; Anzidei, M.; Baldi, P.; Ventura, B.M.; Boschi, E. Strain accumulation across the Messina Straits and kinematics of Sicily and Calabria from GPS data and dislocation modeling. Earth Planet. Sci. Lett. 2010, 298, 347–360. https://doi.org/10.1016/j.epsl.2010.08.005. 15. Lo Giudice, E.; Rasà, R. Very shallow earthquakes and brittle deformation in active volcanic areas: The Etnean region as an example. Tectonophysics 1992, 202, 257–262. 16. De Guidi, G.; Brighenti, F.; Carnemolla, F.; Cataldo, D.; Piro, A.G. New rapid vertical deformation of Santa Tecla Fault scarp (Mt. Etna volcano, Sicily) by lichenometry method. Quaternary Int. 2019, 525, 78–88. https://doi.org/10.1016/j.quaint.2019.07.031. 17. Gresta, S.; Bella, D.; Musumeci, C.; Carveni, P. Some efforts on active faulting processes (earthquake and aseismic creep) acting on the eastern flank of Mt. Etna (Sicily). Acta Vulcanol. 1997, 9, 101–107. 18. Monaco, C.; De Guidi, G.; Ferlito, C. The Morphotectonic map of Mt. Etna. Ital. J. Geosci. 2010, 129, 408–428. https://doi.org/10.3301/ijg.2010.11. 19. Azzaro, R. Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics. J. Geodyn. 1999, 28, 193–213. https://doi.org/10.1016/s0264-3707(98)00037-4. 20. Azzaro, R. Seismicity and Active Tectonics in the Etna Region: Constraints for a Seismotectonic Model. In Mt. Etna: Volcano Laboratory; Geophysical Monograph Series; Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S., Eds.; AGU: Washington, DC, USA, 2004; Volume 143, pp. 205–220. 21. Azzaro, R.; Branca, S.; Gwinner, K.; Coltelli, M. The volcano-tectonic map of Etna volcano, 1:100.000 scale: An integrated approach based on a morphotectonic analysis from high-resolution DEM constrained by geologic, active faulting and seismotectonic data. Ital. J. Geosci. 2012, 131, 153–170. https://doi.org/10.3301/ijg.2011.29. 22. Barreca, G.; Bonforte, A.; Neri, M. A pilot GIS database of active faults of Mt. Etna (Sicily): A tool for integrated hazard evaluation. J. Volcanol. Geotherm. Res. 2013, 251, 170–186. https://doi.org/10.1016/j.jvolgeores.2012.08.013. 23. Hirn, A.; Nicolich, R.; Gallart, J.; Laigle, M.; Cernobori, L.; ETNASEIS Scientific Group. Roots of Etna volcano in faults of great earthquakes. Earth Planet. Sci. Lett. 1997, 148, 171–191. https://doi.org/10.1016/s0012-821x(97)00023-x. Geosciences 2022, 12, 128 22 of 25 24. Gvirtzman, Z.; Nur, A. The formation of Mount Etna as the consequence of slab rollback. Nature 1999, 401, 782–785. https://doi.org/10.1038/44555. 25. Doglioni, C.; Innocenti, F.; Mariotti, G. Why Mt Etna? Terra Nova 2001, 13, 25–31. 26. Argnani, A.; Mazzarini, F.; Bonazzi, C.; Bisson, M.; Isola, I. The deformation offshore of Mount Etna as imaged by multichannel seismic reflection profiles. J. Volcanol. Geotherm. Res. 2013, 251, 50–64. https://doi.org/10.1016/j.jvolgeores.2012.04.016. 27. Maesano, F.E.; Tiberti, M.M.; Basili, R. Deformation and Fault Propagation at the Lateral Termination of a Subduction Zone: The Alfeo Fault System in the Calabrian Arc, Southern Italy. Front. Earth Sci. 2020, 8, 107. https://doi.org/10.3389/feart.2020.00107. 28. Barreca, G.; Branca, S.; Corsaro, R.A.; Scarfì, L.; Cannavò, F.; Aloisi, M.; Monaco, C.; Faccenna, C. Slab Detachment, Mantle Flow, and Crustal Collision in Eastern Sicily (Southern Italy): Implications on Mount Etna Volcanism. Tectonics 2020, 39, e2020TC006188. https://doi.org/10.1029/2020tc006188. 29. Sgroi, T.; Polonia, A.; Barberi, G.; Billi, A.; Gasperini, L. New seismological data from the Calabrian arc reveal arc-orthogonal extension across the subduction zone. Sci. Rep. 2021, 11, 473. https://doi.org/10.1038/s41598-020-79719-8. 30. Monaco, C.; Barreca, G.; Bella, D.; Brighenti, F.; Bruno, V.; Carnemolla, F.; De Guidi, G.; Mattia, M.; Menichetti, M.; Roccheggiani, M.; et al. The seismogenic source of the 2018 December 26th earthquake (Mt. Etna, Italy): A shear zone in the unstable eastern flank of the volcano. J. Geodyn. 2021, 143, 101807. https://doi.org/10.1016/j.jog.2020.101807. 31. Sgroi, T.; Lavecchia, G.; De Nardis, R. Crustal structure and seismotectonics of central Sicily (southern Italy): New constraints from instrumental seismicity. Geophys. J. Int. 2012, 189, 1237–1252. https://doi.org/10.1111/j.1365-246x.2012.05392.x. 32. De Guidi, G.; Barberi, G.; Barreca, G.; Bruno, V.; Cultrera, F.; Grassi, S.; Imposa, S.; Mattia, M.; Monaco, C.; Scarfì, L.; et al. Geological, seismological and geodetic evidence of active thrusting and folding south of Mt. Etna (eastern Sicily): Revaluation of “seismic efficiency” of the Sicilian Basal Thrust. J. Geodyn. 2015, 90, 32–41. https://doi.org/10.1016/j.jog.2015.06.001. 33. Scarfì, L.; Barberi, G.; Barreca, G.; Cannavò, F.; Koulakov, I.; Patanè, D. Slab narrowing in the Central Mediterranean: The Calabro-Ionian subduction zone as imaged by high resolution seismic tomography. Sci. Rep. 2018, 8, 5178. https://doi.org/10.1038/s41598-018-23543-8. 34. Barreca, G.; Scarfì, L.; Gross, F.; Monaco, C.; De Guidi, G. Fault pattern and seismotectonic potential at the south-western edge of the Ionian Subduction system (southern Italy): New field and geophysical constraints. Tectonophysics 2019, 761, 31–45. https://doi.org/10.1016/j.tecto.2019.04.020. 35. Azzaro, R.; Bonforte, A.; Branca, S.; Guglielmino, F. Geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano (Sicily). J. Volcanol. Geotherm. Res. 2013, 251, 5–15. https://doi.org/10.1016/j.jvolgeores.2012.10.001. 36. Mattia, M.; Bruno, V.; Caltabiano, T.; Cannata, A.; Cannavò, F.; D’Alessandro, W.; Di Grazia, G.; Federico, C.; Giammanco, S.; La Spina, A.; et al. A comprehensive interpretative model of slow slip events on Mt. Etna’s eastern flank. Geochem. Geophys. Geosystems 2015, 16, 635–658. https://doi.org/10.1002/2014gc005585. 37. Corsaro, R.A.; Neri, M.; Pompilio, M. Paleo-environmental and volcano-tectonic evolution of the southern flank of Mt. Etna during the last 225 ka inferred from the volcanic succession of the «Timpe», Acireale, Sicily. J. Volcanol. Geother. Res. 2002, 113, 289–306. 38. Azzaro, R.; D’Amico, S.; Tuvè, T. Estimating the Magnitude of Historical Earthquakes from Macroseismic Intensity Data: New Relationships for the Volcanic Region of Mount Etna (Italy). Seism. Res. Lett. 2011, 82, 533–544. https://doi.org/10.1785/gssrl.82.4.533. 39. Scarfì, L.; Messina, A.; Cassisi, C. Sicily and southern Calabria focal mechanism database: A valuable tool for local and regional stress-field determination. Ann. Geophys. 2013, 56, D0109. https://doi.org/10.4401/ag-6109. 40. Scarfì, L.; Langer, H.; Messina, A.; Musumeci, C. Tectonic Regimes Inferred from Clustering of Focal Mechanisms and Their Distribution in Space: Application to the Central Mediterranean Area. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020519. https://doi.org/10.1029/2020jb020519. 41. Alparone, S.; Barberi, G.; Bonforte, A.; Maiolino, V.; Ursino, A. Evidence of multiple strain fields beneath the eastern flank of Mt. Etna volcano (Sicily, Italy) deduced from seismic and geodetic data during 2003–2004. Bull. Volcanol. 2011, 73, 869–885. https://doi.org/10.1007/s00445-011-0456-1. 42. De Guidi, G.; Scudero, S.; Gresta, S. New insights into the local crust structure of Mt. Etna volcano from seismological and morphotectonic data. J. Volcanol. Geotherm. Res. 2012, 223–224, 83–92. https://doi.org/10.1016/j.jvolgeores.2012.02.001. 43. Bonaccorso, A.; Aloisi, M.; Mattia, M. Dike emplacement forerunning the Etna July 2001 eruption modeled through continuous tilt and GPS data. Geophys. Res. Lett. 2002, 29, 1–4. https://doi.org/10.1029/2001gl014397. 44. Bonanno, A.; Palano, M.; Privitera, E.; Gresta, S.; Puglisi, G. Magma intrusion mechanisms and redistribution of seismogenic stress at Mt. Etna volcano (1997–1998). Terra Nova 2011, 23, 339–348. https://doi.org/10.1111/j.1365-3121.2011.01019.x. 45. Bonforte, A.; Guglielmino, F.; Puglisi, G. Large dyke intrusion and small eruption: The December 24, 2018 Mt. Etna eruption imaged by Sentinel-1 data. Terra Nova 2019, 31, 405–412. https://doi.org/10.1111/ter.12403. 46. De Novellis, V.; Atzori, S.; De Luca, C.; Manzo, M.; Valerio, E.; Bonano, M.; Cardaci, C.; Castaldo, R.; Di Bucci, D.; Manunta, M.; et al. DInSAR Analysis and Analytical Modeling of Mount Etna Displacements: The December 2018 Volcano-Tectonic Crisis. Geophys. Res. Lett. 2019, 46, 5817–5827. https://doi.org/10.1029/2019gl082467. 47. Barreca, G.; Corradino, M.; Monaco, C.; Pepe, F. Active Tectonics along the South East Offshore Margin of Mt. Etna: New Insights from High-Resolution Seismic Profiles. Geosciences 2018, 8, 62. https://doi.org/10.3390/geosciences8020062. Geosciences 2022, 12, 128 23 of 25 48. Cocina, O.; Neri, G.; Privitera, E.; Spampinato, S. Stress tensor computations in the Mount Etna area (Southern Italy) and tectonic implications. J. Geodyn. 1997, 23, 109–127. https://doi.org/10.1016/s0264-3707(96)00027-0. 49. Lanzafame, G.; Neri, M.; Coltelli, M.; Lodato, L.; Rust, D. North–South compression in the Mt. Etna region (Sicily): Spatial and temporal distribution. Acta Vulcanol. 1997, 9, 121–133. 50. Patanè, D.; Privitera, E. Seismicity related to 1989 and 1991–1993 Mt. Etna (Italy) eruptions: Kinematic constraints by FPS analysis. J. Volcanol. Geother. Res. 2001, 109, 77–98. 51. Labaume, P.; Bousquet, J.C.; Lanzafame, G. Early deformation at a submarinecompressive front: The Quaternary Catania foredeep south of Mt. Etna, Sicily, Italy. Tectonophysics 1990, 177, 349–366. 52. Ristuccia, G.M.; Di Stefano, A.; Gueli, A.M.; Monaco, C.; Stella, G.; Troja, S.O. OSL chronology of Quaternary terraced deposits outcropping between Mt. Etna volcano and the Catania Plain (Sicily, southern Italy). Phys. Chem. Earth Parts 2013, 63, 36–46. https://doi.org/10.1016/j.pce.2013.03.002. 53. Bonforte, A.; Guglielmino, F.; Coltelli, M.; Ferretti, A.; Puglisi, G. Structural assessment of Mount Etna volcano from Permanent Scatterers analysis. Geochem. Geophys. Geosyst. 2011, 12, 1–19. https://doi.org/10.1029/2010gc003213. 54. Gross, F.; Krastel, S.; Geersen, J.; Behrmann, J.H.; Ridente, D.; Chiocci, F.L.; Bialas, J.; Papenberg, C.; Cukur, D.; Urlaub, M.; et al. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data. Tectonophysics 2016, 667, 63–76. https://doi.org/10.1016/j.tecto.2015.11.011. 55. Branca, S.; De Guidi, G.; Lanzafame, G.; Monaco, C. Holocene vertical deformation along the coastal sector of Mt. Etna volcano (eastern Sicily, Italy): Implications on the time–space constrains of the volcano lateral sliding. J. Geodyn. 2014, 82, 194–203. https://doi.org/10.1016/j.jog.2014.07.006. 56. Govers, R.; Wortel, M. Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth Planet. Sci. Lett. 2005, 236, 505–523. https://doi.org/10.1016/j.epsl.2005.03.022. 57. Gambino, S.; Barreca, G.; Gross, F.; Monaco, C.; Krastel, S.; Gutscher, M.-A. Deformation Pattern of the Northern Sector of the Malta Escarpment (Offshore SE Sicily, Italy): Fault Dimension, Slip Prediction, and Seismotectonic Implications. Front. Earth Sci. 2021, 8, 1–20. https://doi.org/10.3389/feart.2020.594176. 58. Musumeci, C.; Scarfì, L.; Palano, M.; Patanè, D. Foreland segmentation along an active convergent margin: New constraints in southeastern Sicily (Italy) from seismic and geodetic observations. Tectonophysics 2014, 630, 137–149. https://doi.org/10.1016/j.tecto.2014.05.017. 59. Chiocci, F.L.; Coltelli, M.; Bosman, A.; Cavallaro, D. Continental margin large-scale instability controlling the flank sliding of Etna volcano. Earth Planet. Sci. Lett. 2011, 305, 57–64. https://doi.org/10.1016/j.epsl.2011.02.040. 60. C.N.R. Geological Map of Mt. Etna. Scale 1:50,000; L.A.C.: Florence, Italy, 1979. 61. Mattia, M.; Bruno, V.; Montgomery-Brown, E.; Patanè, D.; Barberi, G.; Coltelli, M. Combined seismic and geodetic analysis before, during and after the 2018 Mt. Etna eruption. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009218. https://doi.org/10.1029/2020gc009218. 62. Civico, R.; Pucci, S.; Nappi, R.; Azzaro, R.; Villani, F.; Pantosti, D.; Cinti, F.R.; Pizzimenti, L.; Branca, S.; Brunori, C.A.; et al. Surface ruptures following the 26 December 2018, Mw 4.9, Mt. Etna earthquake, Sicily (Italy). J. Maps 2019, 15, 831–837. https://doi.org/10.1080/17445647.2019.1683476. 63. Rasà, R.; Azzaro, R.; Leonardi, O. Aseismic Creep on Faults and Flank Instability at Mt. Etna Volcano, Sicily. In Volcano Instability on the Earth and Other Planets; McGuire, W.C., Jones, A.P., Neuberg, J., Eds.; Geological Society Special Publication; The Geological Society: London, UK, 1996; Volume 110, pp. 179–192. 64. Azzaro, R.; D’Amico, S.; Mostaccio, A.; Scarfì, L.; Tuvè, T. Terremoti con effetti macrosismici in Sicilia orientale nel periodo Gennaio 2002–Dicembre 2005. Quad. Geof. 2006, 41, 62. 65. De Guidi, G.; Brighenti, F.; Carnemolla, F.; Imposa, S.; Marchese, S.A.; Palano, M.; Scudero, S.; Vecchio, A. The unstable eastern flank of Mt. Etna volcano (Italy): First results of a GNSS-based network at its southeastern edge. J. Volcanol. Geotherm. Res. 2018, 357, 418–424. https://doi.org/10.1016/j.jvolgeores.2018.04.027. 66. Carlino, M.F.; Cavallaro, D.; Coltelli, M.; Cocchi, L.; Zgur, F.; Patanè, D. Time and space scattered volcanism of Mt. Etna driven by strike-slip tectonics. Sci. Rep. 2019, 9, 12125. https://doi.org/10.1038/s41598-019-48550-1. 67. Bruno, V.; Mattia, M.; Aloisi, M.; Palano, M.; Cannavo’, F.; Holt, W.E. Ground deformations and volcanic processes as imaged by CGPS data at Mt. Etna (Italy) between 2003 and 2008. J. Geophys. Res. Earth Surf. 2012, 117, 1–23. https://doi.org/10.1029/2011jb009114. 68. Aloisi, M.; Mattia, M.; Ferlito, C.; Palano, M.; Bruno, V.; Cannavò, F. Imaging the multi-level magma reservoir at Mt. Etna volcano (Italy). Geophys. Res. Lett. 2011, 38, L16306. https://doi.org/10.1029/2011gl048488. 69. Bruno, V.; Mattia, M.; Montgomery-Brown, E.; Rossi, M.; Scandura, D. Inflation Leading to a Slow Slip Event and Volcanic Unrest at Mount Etna in 2016: Insights from CGPS Data. Geophys. Res. Lett. 2017, 44, 12–141. https://doi.org/10.1002/2017gl075744. 70. Herring, T.A.; Floyd, M.A.; King, R.W.; McClusky, S.C. GLOBK: Global Kalman Filter VLBI and GPS Analysis Program. In Reference Manual; Massachusetts Institute of Technology: Cambridge, UK, 2015. 71. Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, S.C. GPS Analysis at MIT. In GAMIT Reference Manual; Massachusetts Institute of Technology: Cambridge, UK, 2018. 72. Haines, A.J.; Holt, W.E. A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. J. Geophys. Res. Earth Surf. 1993, 98, 12057–12082. https://doi.org/10.1029/93jb00892. Geosciences 2022, 12, 128 24 of 25 73. Holt, W.E.; Haines, A.J. The kinematics of northern South Island, New Zealand, determined from geologic strain rates. J. Geophys. Res. Earth Surf. 1995, 100, 17991–18010. https://doi.org/10.1029/95jb01059. 74. Haines, A.J.; Jackson, A.; Holt, W.E.; Agnew, D.C. Representing Distributed Deformation by Continuous Velocity Fields; Science Report 1998, 98/5; Institute of Geology and Nuclear Science: Wellington, New Zeland, 1998. 75. Krastel, S. Short cruise report: MAGOMET—Offshore Flank Movement of Mount Etna and Associated Landslide Hazard in the Ionian Sea (Mediterranean Sea). In Proceedings of the RV Poseidon-Cruise POS496, Malaga, Catania, 24 March–4 April 2016; Christian-Albrechts-Universität zu Kiel, Institute of Geosciences: Kiel, Germany, 2016; 8p. 76. Gutscher, M.-A.; Kopp, H.; Krastel, S.; Bohrmann, G.; Garlan, T.; Zaragosi, S.; Klaucke, I.; Wintersteller, P.; Loubrieu, B.; Le Faou, Y.; et al. Active tectonics of the Calabrian subduction revealed by new multi-beam bathymetric data and high-resolution seismic profiles in the Ionian Sea (Central Mediterranean). Earth Planet. Sci. Lett. 2017, 461, 61–72. https://doi.org/10.1016/j.epsl.2016.12.020. 77. Camerlenghi, A.; Del Ben, A.; Hübscher, C.; Forlin, E.; Geletti, R.; Brancatelli, G.; Micallef, A.; Saule, M.; Facchin, L. Seismic markers of the Messinian salinity crisis in the deep Ionian Basin. Basin Res. 2020, 32, 716–738. https://doi.org/10.1111/bre.12392. 78. Micallef, A.; Camerlenghi, A.; Garcia-Castellanos, D.; Otero, D.C.; Gutscher, M.-A.; Barreca, G.; Spatola, D.; Facchin, L.; Geletti, R.; Krastel, S.; et al. Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. Sci. Rep. 2018, 8, 1078. https://doi.org/10.1038/s41598-018-19446-3. 79. Gaillot, A.; Gutscher, M.A.; Murphy, S.; Klingelhoefer, F. Micro-Bathymetric Mapping of the North Alfeo Strike-Slip Fault (Offshore Catania Sicily): Preliminary Results from the FocusX1 Expedition. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021; EGU21-2731. https://doi.org/10.5194/egusphere-egu21-2731. 80. Scandone, P.; Patacca, E.; Radoicic, R.; Ryan, W.B.F.; Cita, M.B.; Rawson, M.; et al. Mesozoic and Cenozoic rocks from Malta escarpment (Central Mediterranean). AAPG Bull. 1981, 65, 1299–1319. 81. Catalano, R.; Franchino, A.; Merlini, S.; Sulli, A. A crustal section on the eastern Algerian basin to the Ionian ocean (central Mediterranea). Mem. Soc. Geol. It. 2000, 55, 71–85. 82. Barreca, G. Geological and geophysical evidences for mud diapirism in south-eastern Sicily (Italy) and geodynamic implications. J. Geodyn. 2014, 82, 168–177. https://doi.org/10.1016/j.jog.2014.02.003. 83. Polonia, A.; Torelli, L.; Gasperini, L.; Cocchi, L.; Muccini, F.; Bonatti, E.; Hensen, C.; Schmidt, M.; Romano, S.; Artoni, A.; et al. Lower plate serpentinite diapirism in the Calabrian Arc subduction complex. Nat. Commun. 2017, 8, 1–13. https://doi.org/10.1038/s41467-017-02273-x. 84. Woodcock, N.H.; Fischer, M. Strike-slip duplexes. J. Struct. Geol. 1986, 8, 725–735. https://doi.org/10.1016/0191-8141(86)90021-0. 85. Amato, A.; Azzara, R.; Basili, A.; Chiarabba, C.; Cocco, M.; Di Bona, M.; Selvaggi, G. Decembr 13, 1990 Eastern Sicily earthquake. Ann. Geofis. 1995, 38, 255–266. 86. Zhang, H.; Thurber, C.; Bedrosian, P. Joint inversion for Vp, Vs, and Vp/Vs at SAFOD, Parkfield, California. Geochem. Geophys. Geosystems 2009, 10, Q11002. https://doi.org/10.1029/2009gc002709. 87. De Guidi, G.; Caputo, R.; Scudero, S. Regional and local stress field orientation inferred from quantitative analyses of extension joints: Case study from southern Italy. Tectonics 2013, 32, 239–251. 88. Fossen, H. Structural Geology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016; 524p. ISBN 9781107057647. 89. Woodcock, N.H.; Schubert, C. Continental Strike-Slip Tectonics. In Continental Deformation; Hancock, P.L., Ed.; Pergamon Press: New York, NY, USA, 1994; pp. 251–263. 90. Sylvester, A.G. Strike-slip faults. Geol. Soc. of Am. Bull. 1988, 100, 1666–1703. 91. Spampinato, C.R.; Scicchitano, G.; Ferranti, L.; Monaco, C. Raised Holocene paleo-shorelines along the Capo Schisò coast, Taormina: New evidence of recent co-seismic deformation in northeastern Sicily (Italy). J. Geodyn. 2012, 55, 18–31. https://doi.org/10.1016/j.jog.2011.11.007. 92. Murru, M.; Montuori, C.; Wyss, M.; Privitera, E. The locations of magma chambers at Mt. Etna, Italy, mapped byb-values. Geophys. Res. Lett. 1999, 26, 2553–2556. https://doi.org/10.1029/1999gl900568. 93. Patanè, D.; Chiarabba, C.; De Gori, P.; Bonaccorso, A. Magma ascent and the pressurization of Mt. Etna’s volcanic system. Science 2003, 299, 2061–2063. 94. Patanè, D.; Mattia, M.; Aloisi, M. Shallow intrusive processes during 2002–2004 and current volcanic activity on Mt. Etna. Geophys. Res. Lett. 2005, 32, L06302. https://doi.org/10.1029/2004gl021773. 95. Patanè, D.; Barberi, G.; Cocina, O.; De Gori, P.; Chiarabba, C. Time-Resolved Seismic Tomography Detects Magma Intrusions at Mount Etna. Science 2006, 313, 821–823. https://doi.org/10.1126/science.1127724. 96. De Gori, P.; Chiarabba, C.; Patanè, D. Qpstructure of Mount Etna: Constraints for the physics of the plumbing system. J. Geophys. Res. Earth Surf. 2005, 110, B05303. https://doi.org/10.1029/2003jb002875. 97. Mazzarini, F.; Armienti, P. Flank Cones at Mount Etna Volcano: Do they have a power-law distribution? Bull. Volcanol. 2001, 62, 420–430. https://doi.org/10.1007/s004450000109. 98. Favalli, M.; Karátson, D.; Mazzarini, F.; Pareschi, M.T.; Boschi, E. Morphometry of scoria cones located on a volcano flank: A case study from Mt. Etna (Italy), based on high-resolution LiDAR data. J. Volcanol. Geotherm. Res. 2009, 186, 320–330. https://doi.org/10.1016/j.jvolgeores.2009.07.011. 99. Ferlito, C. Mount Etna volcano (Italy). Just a giant hot spring!. Earth-Sci. Rev. 2018, 177, 14–23. https://doi.org/10.1016/j.earscirev.2017.10.004. Geosciences 2022, 12, 128 25 of 25 100. Ferlito, C.; Viccaro, M.; Cristofolini, R. Volatile-rich magma injection into the feeding system during the 2001 eruption of Mt. Etna (Italy): Its role on explosive activity and change in rheology of lavas. Bull. Volcanol. 2009, 71, 1149–1158. https://doi.org/10.1007/s00445-009-0290-x. 101. Ferlito, C.; Coltorti, M.; Lanzafame, G.; Giacomoni, P.P. The volatile flushing triggers eruptions at open conduit volcanoes: Evidence from Mount Etna volcano (Italy). Lithos 2014, 184–187, 447–455. https://doi.org/10.1016/j.lithos.2013.10.030. 102. Uslular, G.; Le Corvec, N.; Mazzarini, F.; Legrand, D.; Gençalioğlu-Kuşcu, G. Morphological and multivariate statistical analysis of quaternary monogenetic vents in the Central Anatolian Volcanic Province (Turkey): Implications for the volcano-tectonic evolution. J. Volcanol. Geotherm. Res. 2021, 416, 107280. https://doi.org/10.1016/j.jvolgeores.2021.107280. 103. Mazzuoli, R.; Tortorici, L.; Ventura, G. Oblique rifting in Salina, Lipari and Vulcano islands (Aeolian islands, southern Italy). Terra Nova 1995, 7, 444–452. https://doi.org/10.1111/j.1365-3121.1995.tb00540.x. 104. Vries, B.V.W.D.; Merle, O. Extension induced by volcanic loading in regional strike-slip zones. Geology 1998, 26, 983–986. https://doi.org/10.1130/0091-7613(1998)0262.3.co;2. 105. Alaniz-Álvarez, S.; Nieto-Samaniego, A.; Morán-Zenteno, D.; Aldave, L.A.A. Rhyolitic volcanism in extension zone associated with strike-slip tectonics in the Taxco region, southern Mexico. J. Volcanol. Geotherm. Res. 2002, 118, 1–14. https://doi.org/10.1016/s0377-0273(02)00247-0. 106. Di Giuseppe, P.; Agostini, S.; Lustrino, M.; Karaoğlu, Ö.; Savaşçın, M.Y.; Manetti, P.; Ersoy, Y. Transition from Compression to Strike-slip Tectonics Revealed by Miocene–Pleistocene Volcanism West of the Karlıova Triple Junction (East Anatolia). J. Pet. 2017, 58, 2055–2087. https://doi.org/10.1093/petrology/egx082.
DOI: 10.3390/geosciences12030128
الاتاحة: https://www.earth-prints.org/handle/2122/16071
https://doi.org/10.3390/geosciences12030128
Rights: CC0 1.0 Universal ; http://creativecommons.org/publicdomain/zero/1.0/
رقم الانضمام: edsbas.BB3F80EE
قاعدة البيانات: BASE
الوصف
DOI:10.3390/geosciences12030128