Academic Journal

Generalized Almost Periodicity in Measure

التفاصيل البيبلوغرافية
العنوان: Generalized Almost Periodicity in Measure
المؤلفون: Marko Kostić, Wei-Shih Du, Halis Can Koyuncuoğlu, Daniel Velinov
المصدر: Mathematics, Vol 12, Iss 4, p 548 (2024)
بيانات النشر: MDPI AG
سنة النشر: 2024
المجموعة: Directory of Open Access Journals: DOAJ Articles
مصطلحات موضوعية: Weyl ρ-almost periodic functions, Doss ρ-almost periodic functions, general measure, convolution products, Volterra integro-differential inclusions, Mathematics, QA1-939
الوصف: This paper investigates diverse classes of multidimensional Weyl and Doss ρ -almost periodic functions in a general measure setting. This study establishes the fundamental structural properties of these generalized ρ -almost periodic functions, extending previous classes such as m -almost periodic and (equi-)Weyl- p -almost periodic functions. Notably, a new class of (equi-)Weyl- p -almost periodic functions is introduced, where the exponent p > 0 is general. This paper delves into the abstract Volterra integro-differential inclusions, showcasing the practical implications of the derived results. This work builds upon the extensions made in the realm of Levitan N -almost periodic functions, contributing to the broader understanding of mathematical functions in diverse measure spaces.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 2227-7390
Relation: https://www.mdpi.com/2227-7390/12/4/548; https://doaj.org/toc/2227-7390; https://doaj.org/article/dd5167e5b6244a8a88bf326c96604f77
DOI: 10.3390/math12040548
الاتاحة: https://doi.org/10.3390/math12040548
https://doaj.org/article/dd5167e5b6244a8a88bf326c96604f77
رقم الانضمام: edsbas.B9D4923
قاعدة البيانات: BASE
الوصف
تدمد:22277390
DOI:10.3390/math12040548