Academic Journal

COBORDISMS OF FOLD MAPS AND MAPS WITH PRESCRIBED NUMBER OF CUSPS

التفاصيل البيبلوغرافية
العنوان: COBORDISMS OF FOLD MAPS AND MAPS WITH PRESCRIBED NUMBER OF CUSPS
المؤلفون: Tobias Ekholm, András Szűcs, Tamás Terpai
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://arxiv.org/pdf/math/0701433v1.pdf.
سنة النشر: 2007
المجموعة: CiteSeerX
الوصف: A generic smooth map of a closed 2k-manifold into (3k −1)-space has a finite number of cusps (Σ 1,1-singularities). We determine the possible numbers of cusps of such maps. A fold map is a map with singular set consisting of only fold singularities (Σ 1,0-singularities). Two fold maps are fold bordant if there are cobordisms between their sourceand target manifolds with a fold map extending the two maps between the boundaries, if the two targets agree and the target cobordism can be taken as a product with a unit interval then the maps are fold cobordant. We compute the cobordism groups of fold maps of (2k − 1)-manifolds into (3k − 2)-space. Analogous cobordism semi-groups for arbitrary closed (3k − 2)-dimensional target manifolds are endowed with Abelian group structures and described. Fold bordism groups in the same dimensions are described as well. 1.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.239.1543; http://arxiv.org/pdf/math/0701433v1.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.239.1543
http://arxiv.org/pdf/math/0701433v1.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.B89495FE
قاعدة البيانات: BASE