Academic Journal

Stability of Liquid Rope Coiling

التفاصيل البيبلوغرافية
العنوان: Stability of Liquid Rope Coiling
المؤلفون: Ribe, N. M., Habibi, M., Bonn, Daniel
المساهمون: Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institute for Advanced Studies in Basic Sciences (IASBS), Laboratoire de Physique Statistique de l'ENS (LPS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), University of Amsterdam Van der Waals-Zeeman Institute (VAN DER WAALS-ZEEMAN INSTITUTE), University of Amsterdam Amsterdam = Universiteit van Amsterdam (UvA)
المصدر: ISSN: 1070-6631.
بيانات النشر: HAL CCSD
American Institute of Physics
سنة النشر: 2006
مصطلحات موضوعية: Physics-Jets-, dynamics, [SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology
الوصف: International audience ; A thin ‘rope' of viscous fluid falling from a sufficient height coils as it approaches a rigid surface. Here we perform a linear stability analysis of steady coiling, with particular attention to the ‘inertiogravitational' regime in which multiple states with different frequencies exist at a fixed fall height. The basic states analyzed are numerical solutions of asymptotic ‘thin-rope' equations that describe steady coiling. To analyze their stability, we first derive in detail a set of more general equations for the arbitrary time-dependent motion of a thin viscous rope. Linearization of these equations about the steady coiling solutions yields a boundary-eigenvalue problem of order twenty-one which we solve numerically to determine the complex growth rate. The multivalued portion of the curve of steady coiling frequency vs. height comprises alternating stable and unstable segments whose distribution agrees closely with high-resolution laboratory experiments. The dominant balance of (perturbation) forces in the instability is between gravity and the viscous resistance to bending of the rope; inertia is not essential, although it significantly influences the growth rate.
نوع الوثيقة: article in journal/newspaper
اللغة: English
الاتاحة: https://hal.science/hal-00129393
https://hal.science/hal-00129393v1/document
https://hal.science/hal-00129393v1/file/ribeetal_text.pdf
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.B88A6FEF
قاعدة البيانات: BASE