Academic Journal

On the spectral radius of the generalized adjacency matrix of a digraph

التفاصيل البيبلوغرافية
العنوان: On the spectral radius of the generalized adjacency matrix of a digraph
المؤلفون: Baghipur, Maryam, Ganie, Hilal A., Ghorbani, Modjtaba, Andrade, Enide
بيانات النشر: Elsevier
سنة النشر: 2024
المجموعة: Repositório Institucional da Universidade de Aveiro (RIA)
مصطلحات موضوعية: Strongly connected digraph, Adjacency matrix, Aα-spectral radius, Maximum out-degree
الوصف: Let $ D$ be a strongly connected digraph and $\alpha\in [0,1].$ In [J. P. Liu, X. Z. Wu, J. S. Chen and B. L. Liu, The $ A_{\alpha} $ spectral radius characterization of some digraphs, Linear Algebra Appl. 563 (2019) 63--74] the matrix $ A_{\alpha}(D)=\alpha Deg(D)+(1-\alpha)A(D),$ where $ A(D)$ and $Deg(D)$ are the adjacency matrix and the diagonal matrix of the out-degrees of $D,$ respectively, was defined. In this paper it is established some sharp bounds on the $A_{\alpha}(D)$-spectral radius in terms of some parameters such as the out-degrees, the maximum out-degree, the second maximum out-degree, the number of vertices, the number of arcs, the average $2$-outdegrees of the vertices of $D$ and the parameter $ \alpha$ of $A_{\alpha}(D)$. The extremal digraphs attaining these bounds are characterized. It is shown that the bounds obtained improve, in some cases, some of recently given bounds presented in the literature. ; in publication
نوع الوثيقة: article in journal/newspaper
اللغة: English
ردمك: 978-0-02-437952-8
0-02-437952-2
تدمد: 0024-3795
1873-1856
Relation: info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PT; info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04106%2F2020/PT; https://www.sciencedirect.com/science/article/pii/S0024379522002944; http://hdl.handle.net/10773/35242
DOI: 10.1016/j.laa.2022.08.017
الاتاحة: http://hdl.handle.net/10773/35242
https://doi.org/10.1016/j.laa.2022.08.017
Rights: embargoedAccess
رقم الانضمام: edsbas.B6691677
قاعدة البيانات: BASE
الوصف
ردمك:9780024379528
0024379522
تدمد:00243795
18731856
DOI:10.1016/j.laa.2022.08.017