Academic Journal

fairadapt: Causal Reasoning for Fair Data Preprocessing

التفاصيل البيبلوغرافية
العنوان: fairadapt: Causal Reasoning for Fair Data Preprocessing
المؤلفون: Plečko, Drago, Bennett, Nicolas, Meinshausen, Nicolai
المصدر: Journal of Statistical Software, 110 (4)
بيانات النشر: American Statistical Association
سنة النشر: 2024
المجموعة: ETH Zürich Research Collection
مصطلحات موضوعية: algorithmic fairness, causal inference, machine learning
الوصف: Machine learning algorithms are useful for various prediction tasks, but they can also learn how to discriminate, based on gender, race or other sensitive attributes. This realization gave rise to the field of fair machine learning, which aims to recognize, quantify and ultimately mitigate such algorithmic bias. This manuscript describes the R package fairadapt, which implements a causal inference preprocessing method. By making use of a causal graphical model alongside the observed data, the method can be used to address hypothetical questions of the form "What would my salary have been, had I been of a different gender/race?". Such individual level counterfactual reasoning can help eliminate discrimination and help justify fair decisions. We also discuss appropriate relaxations which assume that certain causal pathways from the sensitive attribute to the outcome are not discriminatory. ; ISSN:1548-7660
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/application/pdf
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/001308869900001; http://hdl.handle.net/20.500.11850/694309
DOI: 10.3929/ethz-b-000694309
الاتاحة: https://hdl.handle.net/20.500.11850/694309
https://doi.org/10.3929/ethz-b-000694309
Rights: info:eu-repo/semantics/openAccess ; http://creativecommons.org/licenses/by/3.0/ ; Creative Commons Attribution 3.0 Unported
رقم الانضمام: edsbas.B49AC7B6
قاعدة البيانات: BASE
الوصف
DOI:10.3929/ethz-b-000694309