A Multi-Agent Negotiation Strategy for Reducing the Flowtime

التفاصيل البيبلوغرافية
العنوان: A Multi-Agent Negotiation Strategy for Reducing the Flowtime
المؤلفون: Beauprez, Ellie, Caron, Anne-Cécile, Morge, Maxime, Routier, Jean-Christophe
المساهمون: Systèmes Multi-Agents et Comportements (SMAC), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université de Lille
المصدر: 13th International Conference on Agents and Artificial Intelligence
13th International Conference on Agents and Artificial Intelligence (ICAART)
https://hal.science/hal-03015642
13th International Conference on Agents and Artificial Intelligence (ICAART), Feb 2021, Online streaming, Portugal. pp.58-68, ⟨10.5220/0010226000580068⟩
http://www.icaart.org
بيانات النشر: HAL CCSD
INSTICC Press
سنة النشر: 2021
المجموعة: LillOA (HAL Lille Open Archive, Université de Lille)
مصطلحات موضوعية: Multi-Agent Systems, Distributed Problem Solving, Negotiation and Interaction Protocols, [INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA], [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation, [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
جغرافية الموضوع: Online streaming, Portugal
الوصف: 2021 ; International audience ; In this paper, we study the problem of task reallocation for load-balancing in distributed data processing models that tackle vast amount of data. In this context, we propose a novel strategy based on cooperative agents used to optimise the rescheduling of tasks for multiple jobs submitted by users in order to be executed as soon as possible. It allows an agent to determine locally the next task to process and the next task to delegate according to its knowledge, its own belief base and its peer modelling. The novelty of our strategy lies in the ability of agents to identify opportunities and limiting factor agents, and afterwards to reallocate some of the tasks. Our contribution is that, thanks to concurrent bilateral negotiations, tasks are continuously reallocated according to the local perception and the peer modelling of agents. In order to evaluate the responsiveness of our approach, we implement a prototype testbed and our experimentation reveals that our strategy reaches a flowtime which is close to the one reached by the classical heuristic approach and significantly reduces the rescheduling time.
نوع الوثيقة: conference object
اللغة: English
Relation: hal-03015642; https://hal.science/hal-03015642; https://hal.science/hal-03015642/document; https://hal.science/hal-03015642/file/beauprez21icaartCRC.pdf
DOI: 10.5220/0010226000580068
الاتاحة: https://hal.science/hal-03015642
https://hal.science/hal-03015642/document
https://hal.science/hal-03015642/file/beauprez21icaartCRC.pdf
https://doi.org/10.5220/0010226000580068
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.B3AFF3E3
قاعدة البيانات: BASE
الوصف
DOI:10.5220/0010226000580068