Computational Evaluation of the Combination of Semi-Supervised and Active Learning for Histopathology Image Segmentation with Missing Annotations

التفاصيل البيبلوغرافية
العنوان: Computational Evaluation of the Combination of Semi-Supervised and Active Learning for Histopathology Image Segmentation with Missing Annotations
المؤلفون: Laura Gálvez Jiménez, Dierckx, Lucile, Maxime Amodei, Hamed Razavi Khosroshahi, Natarajan Chidambaran, Anh-Thu Phan Ho, Alberto Franzin, ICCV CVAMD workshop
المساهمون: UCL - SST/ICTM/INGI - Pôle en ingénierie informatique
المصدر: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, , p. 2552-2563 (2023)
سنة النشر: 2023
المجموعة: DIAL@USL-B (Université Saint-Louis, Bruxelles)
الوصف: Real-world segmentation tasks in digital pathology require a great effort from human experts to accurately annotate a sufficiently high number of images. Hence, there is a huge interest in methods that can make use of non-annotated samples, to alleviate the burden on the annotators. In this work, we evaluate two classes of such methods, semi-supervised and active learning, and their combination on a version of the GlaS dataset for gland segmentation in colorectal cancer tissue with missing annotations. Our results show that semi-supervised learning benefits from the combination with active learning and outperforms fully supervised learning on a dataset with missing annotations. However, an active learning procedure alone with a simple selection strategy obtains results of comparable quality.
نوع الوثيقة: conference object
اللغة: English
Relation: boreal:278524; http://hdl.handle.net/2078.1/278524
الاتاحة: http://hdl.handle.net/2078.1/278524
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.B38FA91
قاعدة البيانات: BASE