Academic Journal

Two new bounds for the random-edge simplex algorithm

التفاصيل البيبلوغرافية
العنوان: Two new bounds for the random-edge simplex algorithm
المؤلفون: Bernd Gärtner, Volker Kaibel
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://arxiv.org/pdf/math/0502025v2.pdf.
سنة النشر: 2008
المجموعة: CiteSeerX
الوصف: We prove that the Random-Edge simplex algorithm requires an expected number of at most 13n / √ d pivot steps on any simple d-polytope with n vertices. This is the first nontrivial upper bound for general polytopes. We also describe a refined analysis that potentially yields much better bounds for specific classes of polytopes. As one application, we show that for combinatorial d-cubes, the trivial upper bound of 2 d on the performance of Random-Edge can asymptotically be improved by any desired polynomial factor in d.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.236.6852; http://arxiv.org/pdf/math/0502025v2.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.236.6852
http://arxiv.org/pdf/math/0502025v2.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.B2D18D16
قاعدة البيانات: BASE