Academic Journal

Image Classification for Soybean and Weeds Based on ViT

التفاصيل البيبلوغرافية
العنوان: Image Classification for Soybean and Weeds Based on ViT
المؤلفون: Liang, Jingxin, Wang, Dong, Ling, Xufeng
المصدر: Journal of Physics: Conference Series ; volume 2002, issue 1, page 012068 ; ISSN 1742-6588 1742-6596
بيانات النشر: IOP Publishing
سنة النشر: 2021
الوصف: Abstracts. In this paper, ViT deep neural network based on self-attention mechanism is used in classification for images of soybean and weeds. Firstly, the overall image is split into multiple tiles; with each tile regarded as a word, the whole image is regarded as a sentence, which can be used for image semantic recognition by natural language processing technology. We designed a ViT network with sequence length of 50, embedded dimension of 384, and self-attention module layers of 12. With soybean weed classification dataset, the network is trained, verified and tested. Experimental results showed that ViT network is superior in classification on dataset of soybean and weeds, with excellent generalization capability.
نوع الوثيقة: article in journal/newspaper
اللغة: unknown
DOI: 10.1088/1742-6596/2002/1/012068
DOI: 10.1088/1742-6596/2002/1/012068/pdf
الاتاحة: http://dx.doi.org/10.1088/1742-6596/2002/1/012068
https://iopscience.iop.org/article/10.1088/1742-6596/2002/1/012068
https://iopscience.iop.org/article/10.1088/1742-6596/2002/1/012068/pdf
Rights: http://creativecommons.org/licenses/by/3.0/ ; https://iopscience.iop.org/info/page/text-and-data-mining
رقم الانضمام: edsbas.AEBF7D34
قاعدة البيانات: BASE
الوصف
DOI:10.1088/1742-6596/2002/1/012068