Academic Journal

Particle Size Inversion Constrained by L∞ Norm for Dynamic Light Scattering

التفاصيل البيبلوغرافية
العنوان: Particle Size Inversion Constrained by L∞ Norm for Dynamic Light Scattering
المؤلفون: Gaoge Zhang, Zongzheng Wang, Yajing Wang, Jin Shen, Wei Liu, Xiaojun Fu, Changzhi Li
المصدر: Materials; Volume 15; Issue 20; Pages: 7111
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2022
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: dynamic light scattering, particle sizing, regularization inversion, unimodal distribution, bimodal distribution
الوصف: Particle size inversion of dynamic light scattering (DLS) is a typically ill-posed problem. Regularization is an effective method to solve the problem. The regularization involves imposing constraints on the fitted autocorrelation function data by adding a norm. The classical regularization inversion for DLS data is constrained by the L2 norm. In the optimization equation, the norm determines the smoothness and stability of the inversion result, affecting the inversion accuracy. In this paper, the Lp norm regularization model is constructed. When p is 1, 2, 10, 50, 100, 1000, and ∞, respectively, the influence of their norm models on the inversion results of data with different noise levels is studied. The results prove that overall, the inversion distribution errors show a downward trend with the increase of p. When p is larger than 10, there is no significant difference in distribution error. Compared with L2, L∞ can provide better performance for unimodal particles with strong noise, although this does not occur in weak noise cases. Meanwhile, L∞ has lower sensitivity to noise and better peak resolution, and its inverse particle size distribution is closer to the true distribution for bimodal particles. Thus, L∞ is more suitable for the inversion of DLS data.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: Materials Physics; https://dx.doi.org/10.3390/ma15207111
DOI: 10.3390/ma15207111
الاتاحة: https://doi.org/10.3390/ma15207111
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.AD7CD1AF
قاعدة البيانات: BASE