Academic Journal

Details on Gaussian Process Regression (GPR) and Semi-GPR Modeling

التفاصيل البيبلوغرافية
العنوان: Details on Gaussian Process Regression (GPR) and Semi-GPR Modeling
المؤلفون: Shekaramiz, Mohammad, Moon, Todd K., Gunther, Jacob H.
المصدر: Electrical and Computer Engineering Faculty Publications
بيانات النشر: Hosted by Utah State University Libraries
سنة النشر: 2019
المجموعة: Utah State University: DigitalCommons@USU
مصطلحات موضوعية: gaussian process regression, GPR, semi-GPR, modeling, Electrical and Computer Engineering
الوصف: This report tends to provide details on how to perform predictions using Gaussian process regression (GPR) modeling. In this case, we represent proofs for prediction using non-parametric GPR modeling for noise-free predictions as well as prediction using semi-parametric GPR for noisy observations.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: unknown
Relation: https://digitalcommons.usu.edu/ece_facpub/216; https://digitalcommons.usu.edu/context/ece_facpub/article/1214/viewcontent/Details_on_Gaussian_Process_Regression_and_Semi_GPR_Modeling.pdf
DOI: 10.13140/RG.2.2.17128.32002
الاتاحة: https://digitalcommons.usu.edu/ece_facpub/216
https://doi.org/10.13140/RG.2.2.17128.32002
https://digitalcommons.usu.edu/context/ece_facpub/article/1214/viewcontent/Details_on_Gaussian_Process_Regression_and_Semi_GPR_Modeling.pdf
Rights: Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact the Institutional Repository Librarian at digitalcommons@usu.edu.
رقم الانضمام: edsbas.AD25257C
قاعدة البيانات: BASE
الوصف
DOI:10.13140/RG.2.2.17128.32002