Academic Journal

Weight minimization of elastic bodies weakly supporting tension. I. Domains with one curved side

التفاصيل البيبلوغرافية
العنوان: Weight minimization of elastic bodies weakly supporting tension. I. Domains with one curved side
المؤلفون: Hlaváček, Ivan, Křížek, Michal
بيانات النشر: Institute of Mathematics, Academy of Sciences of the Czech Republic
Matematický ústav AV ČR
سنة النشر: 1992
المجموعة: DML-CZ (Czech Digital Mathematics Library)
مصطلحات موضوعية: keyword:existence, keyword:masonry dam, keyword:hydrostatic pressure, keyword:penalty method, keyword:convergence, keyword:shape optimization, keyword:weight minimization, keyword:finite elements, msc:49Q10, msc:65K10, msc:65N30, msc:73C99, msc:73V20, msc:73k40, msc:74P10, msc:74P99, msc:74S05, msc:74S30
الوصف: summary:Shape optimization of a two-dimensional elastic body is considered, provided the material is weakly supporting tension. The problem generalizes that of a masonry dam subjected to its own weight and to the hydrostatic presure. Existence of an optimal shape is proved. Using a penalty method and finite element technique, approximate solutions are proposed and their convergence is analyzed.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
تدمد: 0862-7940
1572-9109
Relation: mr:MR1157456; zbl:Zbl 0767.73047; reference:[1] G. Anzellotti: A class of non-coercive functionals and masonry-like materials.Ann. Inst. H. Poincaré 2 (1985), 261-307. MR 0801581, 10.1016/S0294-1449(16)30398-5; reference:[2] S. Bennati A. M. Genai C. Padovani: Trapezoidal gravity dams in pure compression.CNUCE - C.N.R., Internal Rep. C88-22, May 1988.; reference:[3] S. Bennati M. Lucchesi: The minimal section of a triangular masonry dam.Мессаniса J. Ital. Assoc. Theoret. Appl. Mech. 23 (1988), 221-225.; reference:[4] R. A. Brockman: Geometric sensitivity analysis with isoparametric finite elements.Comm. Appl. Numer. Methods 3 (1987), 495-499. Zbl 0623.73081, MR 0937760, 10.1002/cnm.1630030609; reference:[5] M. Giaquinta G. Giusti: Researches on the equilibrium of masonry structures.Arch. Rational Mech. Anal. 88 (1985), 359-392. MR 0781597, 10.1007/BF00250872; reference:[6] I. Hlaváček: Optimization of the shape of axisymmetric shells.Apl. Mat. 28 (1983), 269-294. MR 0710176; reference:[7] I. Hlaváček: Inequalities of Korn's type, uniform with respect to a class of domains.Apl. Mat. 34 (1989), 105-112. Zbl 0673.49003, MR 0990298; reference:[8] I. Hlaváček R. Mäkinen: On the numerical solution of axisymmetric domain optimization problems.Appl. Math. 36 (1991), 284-304. MR 1113952; reference:[9] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies. An Introduction.Elsevier, Amsterdam, 1981. MR 0600655; reference:[10] O. Pironneau: Optimal Shape Design for Elliptic Systems.Springer-Verlag, New York, 1983. MR 0725856
الاتاحة: http://hdl.handle.net/10338.dmlcz/104504
Rights: access:Unrestricted ; rights:DML-CZ Czech Digital Mathematics Library, http://dml.cz/ ; rights:Institute of Mathematics AS CR, http://www.math.cas.cz/ ; conditionOfUse:http://dml.cz/use
رقم الانضمام: edsbas.ACD7DDB5
قاعدة البيانات: BASE